

## Further Understanding of Furnace Wall Corrosion in Coal-Fired Boilers

Steven C. Kung, Ph.D.

2014 NETL Crosscutting Research Review Meeting

May 21, 2014

## **Background**

- Stage combustion to reduce NO<sub>x</sub> emission results in widespread reducing conditions in lower furnace
- Sulfur in coal exists as SO<sub>2</sub> and H<sub>2</sub>S at combustion gas temperatures
- Sulfur converts to H<sub>2</sub>S at wall temperatures
- Corrosion attack dominated by oxidation/sulfidation on furnace walls
- Two corrosion models developed previously:
  - Model 1 Materials Performance, 36(12), p. 36, 1997
  - Model 2 *EPRI Report TR-111152, 1998*
- Prior work considered sulfur only
- Chlorine accelerates corrosion, but its role unclear



## **Approach**

- Characterize corrosive environments in lower furnace of coal-fired boilers
  - Combustion of eight U.S. coals in a pilot-scale testing facility under staged air combustion
  - Online measurement of corrosive gaseous species
  - Collection and analysis of deposit samples
- Generate corrosion database
  - Perform laboratory corrosion tests under realistic low-NO<sub>x</sub> conditions determined from pilot-scale study
- Develop models and predictive equations for furnace wall corrosion
  - Development of advanced corrosion model to account for both S and Cl

## **Eight U.S. Coals Studied**

|                                                                | ND<br>B. Zap | WY<br>PRB | IN #6<br>Gibson | OH<br>Gatling | IL#6<br>Galatia | KY<br>#11 | OH<br>Mahoning | Pitt.<br>#8 |  |  |  |
|----------------------------------------------------------------|--------------|-----------|-----------------|---------------|-----------------|-----------|----------------|-------------|--|--|--|
| RANK                                                           | Lignite      | Sub-Bit.  | hvCb<br>Bit     | hvBb<br>Bit   | hvBb<br>Bit     | hvBb Bit  | hvAb<br>Bit    | mvAb<br>Bit |  |  |  |
| PROXIMATE ANALYSIS (ASTM D-5142), As Received (weight %)       |              |           |                 |               |                 |           |                |             |  |  |  |
| Moisture                                                       | 27.33        | 24.59     | 7.25            | 3.77          | 5.40            | 3.39      | 2.22           | 1.05        |  |  |  |
| Ash                                                            | 8.66         | 5.14      | 7.20            | 11.34         | 8.65            | 8.46      | 9.92           | 10.45       |  |  |  |
| Volatile Matter                                                | 33.77        | 37.00     | 30.87           | 40.73         | 35.68           | 36.97     | 40.79          | 18.61       |  |  |  |
| Fixed Carbon                                                   | 30.24        | 33.27     | 54.68           | 44.16         | 50.27           | 51.18     | 47.07          | 69.89       |  |  |  |
| ULTIMATE ANALYSIS (ASTM D-5142 / 5373), As Received (weight %) |              |           |                 |               |                 |           |                |             |  |  |  |
| Moisture                                                       | 27.33        | 24.59     | 7.25            | 3.77          | 5.40            | 3.39      | 2.22           | 1.05        |  |  |  |
| Hydrogen                                                       | 2.03         | 2.55      | 4.02            | 4.07          | 3.74            | 4.34      | 4.18           | 3.86        |  |  |  |
| Carbon                                                         | 46.56        | 54.75     | 69.48           | 67.11         | 70.16           | 70.89     | 74.67          | 77.37       |  |  |  |
| Nitrogen                                                       | 0.86         | 0.83      | 1.36            | 0.94          | 1.04            | 1.23      | 0.93           | 1.44        |  |  |  |
| Sulfur                                                         | 0.67         | 0.25      | 1.14            | 4.31          | 2.69            | 3.64      | 1.96           | 1.03        |  |  |  |
| Oxygen                                                         | 13.89        | 11.89     | 9.55            | 8.46          | 8.32            | 8.05      | 6.12           | 4.80        |  |  |  |
| Ash                                                            | 8.66         | 5.14      | 7.20            | 11.34         | 8.65            | 8.46      | 9.92           | 10.45       |  |  |  |
| Chloride (wet basis)                                           | 0.001        | 0.001     | 0.212           | 0.039         | 0.389           | 0.206     | 0.199          | 0.0045      |  |  |  |
| HEATING VALUE (ASTM D-5865), As Received (Btu/lb)              |              |           |                 |               |                 |           |                |             |  |  |  |
| Heating Value                                                  | 7,792        | 9,156     | 12,400          | 12,191        | 12,575          | 12,905    | 13,404         | 13,715      |  |  |  |

## Mine Locations of Eight U.S. Coals Studied



## **Pilot-Scale Combustion Testing Facility**





- Down-fired combustor
- Variable swirl burner
- 160 KW<sub>th</sub>
- Pulverized coal
- Swirl stabilized flame
- Staged air combustion

#### Gas and Deposit Sampling in Pilot-Scale Test Facility



• S.R. = 0.85 in burner zone

Water-cooled deposition probe

#### **Online Gas Measurement**

Heated sampling line (180°C) from furnace to analyzers

## Laboratory Fireside Corrosion Testing 1000 hours/test



## **Materials Evaluated in Laboratory Corrosion Tests**

|        | T2     | T11      | T23    | T22    | Grade<br>91 | Grade 9  | 304H   | 309H   | 310H   | WO 52  | WO 72  |
|--------|--------|----------|--------|--------|-------------|----------|--------|--------|--------|--------|--------|
| UNS#   | K11547 | K11597   | K40714 | K21590 | К90901      | K90941   | S30409 | S30909 | S31009 | N06052 | N06072 |
| Ni     |        | 0.04     |        | 0.13   | 0.14        |          | 11     | 12.48  | 19.37  | 56.3   | 47.2   |
| Cr     | 0.56   | 1.29     | 2.18   | 2.41   | 8.15        | 8.92     | 18.83  | 22.34  | 25.45  | 29.6   | >41.2  |
| Fe     |        | BAL      | Bal    | Bal    | Bal         | Bal      | Bal    | Bal    | Bal    | 12.2   | 10.6   |
| Мо     | 0.46   | 0.52     | 0.21   | 0.96   | 0.91        | 0.97     |        | 0.09   | 0.40   | 0.03   | 0.07   |
| Co     |        |          |        |        |             |          |        |        |        | 0.003  | 0.02   |
| С      | 0.12   | 0.07     | 0.084  | 0.15   | 0.11        | 0.110    | 0.05   | 0.05   | 0.04   | 0.029  | 0.023  |
| N      |        |          | 0.0076 |        | 0.044       | 0.013    |        |        |        |        |        |
| В      |        |          | 0.001  |        |             |          |        |        |        |        |        |
| Mn     | 0.56   | 0.47     | 0.50   | 0.5    | 0.39        | 0.37     | 1.8    | 1.62   | 1.63   | 0.29   | 0.11   |
| Si     | 0.20   | 0.59     | 0.25   | 0.23   | 0.27        | 0.73     | 0.45   | 0.31   | 0.63   | 0.2    | 0.16   |
| Al     |        | 0.019    | 0.027  | 0.021  | 0.017       | 0.009    |        |        |        | 0.7    | 0.14   |
| Ti     |        |          |        | 0.001  | 0.002       |          |        |        |        | 0.53   | 0.44   |
| Nb     |        |          | 0.034  |        | 0.095       |          |        |        |        |        |        |
| Nb+Ta  |        |          |        |        |             |          |        |        |        | 0.02   | 0.02   |
| V      |        | 0.001    | 0.25   | 0.013  | 0.21        | 0.03     |        |        |        | 0.02   | 0.02   |
| w      |        |          | 1.46   |        |             |          |        |        |        | ND     | ND     |
| Cu     |        | 0.06     |        | 0.19   | 0.25        | 0.19     |        | 0.40   | 0.17   | 0.02   | 0.03   |
| Р      | 0.011  | 0.018    | 0.009  | 0.008  | 0.014       | 0.016    | 0.01   | 0.023  | 0.021  |        |        |
| S      | 0.002  | 0.009    | <0.001 | 0.013  | 0.004       | 0.006    | 0.013  | 0.003  | 0.0004 |        |        |
| Others |        | 0.007 Sn |        |        | 0.020 Sn    | 0.011 Sn |        |        |        | 0.058  |        |

### **Corrosion Rate vs. Cr wt.%**



## **Corrosion Rate vs. Temperature**



### **Corrosion Rate vs. 1/T**



### SEM/EDS Analysis of T11 after Exposure to OH Gatling at 454°C



#### SEM/EDS Analysis of T11 after Exposure to OH Mahoning at 454°C



# Active Sulfidation Mechanism Proposed for Low-Alloy Ferritic Steels

At deposit/FeS interface → high Fe activity FeS (s) + 2 HCl (g) = FeCl<sub>2</sub> (g) + H<sub>2</sub>S (g) or Fe + 2 HCl (g) = FeCl<sub>2</sub> (g) + H<sub>2</sub> (g)

Away from base of deposit → low Fe activity FeCl<sub>2</sub> (g) + H<sub>2</sub>S (g) = FeS (s) + 2 HCl (g) or FeCl<sub>2</sub> (g) + H<sub>2</sub> (g) = Fe + 2 HCl (g)

- Cyclic reactions → Active Sulfidation
  - Corrosion product of FeS in contact with HCI
  - Outward diffusion of FeCl<sub>2</sub> vapor into deposit
  - Porous FeS stringers formed in deposit
  - Condensed chloride not required

#### **Active Sulfidation Mechanism**



#### **Maximum Rate of Active Sulfidation Mechanism**

#### IL #6 Galatia Coal at 454°C

FeS (s) + 2 HCl (g) = 
$$FeCl_2(g) + H_2S(g)$$

Thermodynamic data:

$$\log P_{FeCl2} = \log (P_{HCl}^2/P_{H2S}) + \log a_{Fe} - 1.456$$

Hertz-Knudsen equation:

P (torr) = 17.14 × 
$$(T/M)^{1/2}$$
 × G  
G = evaporation rate

Apply test conditions:

$$G = 4.1 \times 10^{-6} \text{ gm/cm}^2\text{-sec}$$
  
= 6,400 mpy

 Corrosion mechanism governed by diffusion process (assisted by chlorine)

## **Conclusions**

- Comprehensive study on furnace wall corrosion performed
- A new corrosion mechanism, Active Sulfidation, identified and proposed for low-alloy ferritic steels (less important for austenitic and nickel-base alloys)
- The role of chlorine in furnace wall corrosion revealed
- The presence of chlorine accelerates overall sulfidation via FeCl<sub>2</sub>(g) cyclic reactions

## **Acknowledgement**

- Work supported by U.S. Department of Energy with B&W cost share
- NETL Project Manager (DE-FC26-07NT43097 ): Vito Cedro
- Consultant: Professor Robert A. Rapp, Ohio State University