

Rising to the Challenge of Climate Change: The Role of Innovation

Dr. Darren Mollot

Director, Office of Clean Energy System
Office of Fossil Energy

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

A Global Resource – Could Transform the World

Many energy & environmental challenges face the world

Increasing energy demand (2-3x increase)

Water scarcity

Pollution reduction

Greenhouse gas emission reduction Climate change and arctic impacts

40 years of EOR and 15 years of CCS

IEA CCS Roadmap 2013: Key Technologies for Reducing Global CO₂ Emissions

Most 2050 climate budgets require CCS from NatGas power

Source: IEA Roadmap 2013.

Note: Numbers in brackets are shares in 2050. For example, 14% is the share of CCS in cumulative emission reductions through 2050, and 17% is the share of CCS in emission reductions in 2050, compared with the 6DS.

The US and international community have deployed over a dozen large CCS projects

Key unit of innovation – global engines of discovery

Large Scale Integrated Projects World Wide

Data from Global CCS Institute

DOE Office of Fossil Energy Clean Coal Program

DOE/FE's Clean Coal and CCS Mission

Success of the demos

- Serial # 1 in operation 2013-2018
- A deep and rich set of public learning

R&D – Making CCS technology widely adopted

- Intrinsic Capture of CO2 e.g. Advanced combustion
- Dramatic reductions in size, reliability, and cost
- Ensure storage is safe and permanent

New mode: delivering solutions

Integrated Fossil Energy Solutions

Efficiencies > 45%

↓ Capital Cost by 50%

\$10 - \$40/tonne CO₂ Captured

Near-zero GHGs

Near-zero criteria pollutants

Near-zero water usage

Advanced Combustion

5 MWE Oxycombustion Pilot

Advanced CO₂ Capture and Compression

□ Solvents

Pressurized

 \Box O₂ membrane □ Chemical

looping ■ USC Materials

- ☐ Membranes
- Hybrid
- Process

- Gasification
 - □ Turbines
- ☐ Supercritical CO₂
- Direct Power Extraction

Advanced Energy Systems

Advanced Turbines

CO₂ Storage

- Sorbents
- Intensification Cryogenic Capture
- □ Carbon Utilization (EOR)
- Infrastructure (RCSPs
- □ Geological Storage
- Monitoring, Verification and Accounting

A technology pipeline for affordable CCS

We need more 2nd generation pilots!

DOE CCUS Demonstration Projects

Focus – Large-scale commercial demonstration of CCUS integrated with coal power generation and industrial sources.

Major Demonstration Projects

Recipient	Project	Location	DOE Funding	Status	Storage Type	CO ₂ Seq. (Metric Tons Per Year)	Storage Start
Air Products	Steam Methane Reformer Hydrogen Production	Port Arthur, TX	\$284M	Operations	EOR	~925,000	2013
Southern Company Services (Kemper)	Integrated Gasification Combined Cycle (IGCC)	Kemper County, MS	\$270M	Under Construction	EOR	~3,000,000	2014
Archer Daniels Midland	Ethanol Fermentation CO ₂	Decatur, IL	\$141M	Under Construction	Saline	~900,000	2014
NRG Energy (Petra Nova) WA Parish	Retrofit Pulverized Coal plant	Thompson, TX	\$167M	Financing	EOR	1,400,000	2016
Summit Texas Clean Energy Project	Integrated Gasification Combined Cycle Polygeneration	Penwell, TX	\$450M	Financing	EOR	2,200,000	2017
Leucadia Energy, LLC	Methanol from Petcoke Gasification	Lake Charles, LA	\$261M	Front End Engineering & Design	EOR	~4,500,000	2017
FutureGen 2.0	Oxycombustion Pulverized Coal Boiler Retrofit	Meredosia, IL / Morgan County, IL	\$1B	Front End Engineering & Design	Saline	1,000,000	2017 (est.)
Hydrogen Energy California (HECA)	Integrated Gasification Combined Cycle Polygeneration	Kern County, CA	\$408M	Front End Engineering & Design	EOR	2,570,000	2019 (est.)

Summit Texas Clean Energy, LLC CCPI-3

Advanced IGCC-Polygen

- Penwell, Ector County, TX (greenfield)
- 600 MW (syngas); 400 MW (power plant); 200 MW (net) to grid, 0.84 MMtonnes/yr urea
 - SFG-500 gasifiers (2 x 50%)
 - High H₂ SGCC6-5000F combined cycle (1 x 1)
- Fuel: PRB sub bituminous coal
- 90% CO₂ capture ~2,630,000 tonnes CO₂/year
 - 2.0 MM tonnes EOR; 0.63 MM to Urea production
 - 2-stage Water Gas Shift, Linde Rectisol * AGR
- EOR: Permian Basin oil fields
- Total DOE Project: \$1.727 B; DOE Share: \$450 MM (26%)
- Total Plant Cost ~\$3.85 B

Key Dates

- Project Awarded: Jan 2010
 - Air Permit; Dec 2010
- NEPA Record of Decision: Sep 2011
 - Financial Close: Jun 2014
 - Construction: Jul 2014
 - Operation: Sep 2018

Status

- Urea contract: Jan 2011; CO₂ contracts: Nov 2011
 - PPA: Dec 2011; expired & being renegotiated
- Chexim signed for debt financing MOU: Sep 2012
- Sinopec signed EPC agreement: Aug 2013; now just EP
 - STCE seeking separate construction contract

Summit – Texas Clean Energy Project

Summit Annual Revenues (30-yr avg)

Petra Nova – NRG W.A. Parish CCPI-3 Advanced Post Combustion CO₂ Capture

- Thompsons, TX (near Houston)
- 240 MWe slipstream at NRG Energy's W.A.
 Parish power plant (originally 60 MWe)
- Fuel: PRB sub-bituminous coal
- 90% CO₂ capture (KM CDR Process®) 1,400,000 tonnes CO₂/year
- EOR: Hilcorp West Ranch oil field
- Total DOE Project: \$472 MM

DOE Share: \$167 MM

Total Project Cost: \$1.1 B

Key Dates

Project Awarded: May 2010

Air Permit: Dec 2012

NEPA Record of Decision: May 2013

Financial Close: June 2014

Construction: Mar 2014 (LNTP)

Operation: Apr 2017

Status

- EOR Host Site acquired: Oct 2011
- 240 MWe FEED completed: Feb 21, 2012
- MHI initiated detailed design: Dec 2012
- NRG-Petra Nova signed engagement letter with a debt financing provider: Dec 2012
 - Signed EPC contract, Issued LNTP: Mar 2014
 - Finalizing debt financing arrangements

W.A. Parish Site Overview

Advanced Post Combustion CO₂ Capture with Enhanced Oil Recovery

Clean Coal Research Program

Integrated Fossil Energy Solutions

Efficiencies > 45%

↓ Capital Cost by 50%

\$10 - \$40/tonne CO₂ Captured

Near-zero GHGs

Near-zero criteria pollutants

Near-zero water usage

Advanced Combustion

5 MWE Oxycombustion Pilot

Advanced CO₂ Capture and Compression

□ Solvents

Pressurized

 \Box O₂ membrane □ Chemical

■ USC Materials

looping

- Sorbents
- ☐ Membranes
- Process
- Cryogenic Capture

Gasification

- □ Turbines
- ☐ Supercritical CO₂
- Direct Power Extraction

Advanced Energy Systems

Advanced Turbines

CO₂ Storage

- Hybrid
- Intensification

- □ Carbon Utilization (EOR)
- Infrastructure (RCSPs
- □ Geological Storage
- Monitoring, Verification and Accounting

Gasification Systems

Advanced Combustion Systems Program

Advanced Combustion Systems Program

OXY-COMBUSTION SYSTEM COMPONENTS

1ST-GENERATION TECHNOLOGY Atmospheric Pressure Oxy-Combustion

- Cryogenic ASU
- · Conventional Boiler
- CO₂ Recycle
- · Supercritical Steam
- Conventional Purification
- · Conventional Compression

2ND-GENERATION TECHNOLOGY Atmospheric Pressure Oxy-Combustion

- · Advanced Cryogenic ASU
- · Advanced Oxy-Boiler
- Advanced Ultra-Supercritical Steam
- Advanced Purification
- Advanced Compression

Focus on Transformational Technologies

TRANSFORMATIONAL TECHNOLOGIES

Pressurized Oxy-Combustion

- Advanced Cryogenic ASU or O₂ Membane
- High-Pressure Combustor
- Advanced Ultra-Supercritical Steam Conditions
- Supercritical CO₂ Power Cycle
- · Advanced Purification
- · Advanced Compression

OTM Power Cycle

- Natural Gas OTM Reformer
- OTM Partial Oxidizer
- OTM Boiler
- Advanced Ultra-Supercritical Steam Conditions
- Advanced Purification
- Advanced Compression

Targeted R&D Areas for H₂ Turbines

Improved compressor efficiency through three dimensional aero dynamics for higher pressure ratio

Compressor

Combustor
Combustion of hydrogen fuels
with single digit NOx, no
flashback and minimal

combustion instability

<u>Turbine</u>

Improved aerodynamics, longer airfoils for a larger annulus / higher mass flow and improved internal cooling designs to minimize cooling flows while at higher temperatures

Exhaust Diffuser

Improved diffuser designs for higher temperature exhaust, lower pressure drop with increased mass flow

Rotor

Increase rotor torque for higher power output and the potential for lowering capital cost (\$/kW)

Materials

Improved TBC, bond coats and base alloys for higher heat flux, thermal cycling and aggressive conditions (erosion, corrosion and deposition) in IGCC applications

Leakage

Reduced leakage at tip and wall interface and reduced recirculation at nozzle/rotating airfoil interface for higher turbine efficiency and less purge

Carbon Capture Key Technologies

CO₂ Capture R&D: Need Advancements in Different Concepts and Several Areas for Success

Technology Development Requires Coupling of Multiple Advancements

- State of the art absorption process coupled with unconventional stripping and advanced solvent
- Pre-concentration of CO₂ to improve driving force for low-cost separation
- Coupling membrane and sorbent technologies to capitalize on advantages of each
- Use of advanced simulation to link engineered solvents or sorbents with unconventional processing techniques

Advanced CO₂ Capture Technologies

Examples of novel materials for CO2 capture

- Nano Porous Membranes for solvent/gas contactor
 - PEEK (polymer) membrane
- Mixed Matrix Membranes
 - Polymer and MOFs
- Molecular basket sorbents
 - Silica and immobilized PEI

Core R&D Research Areas Key Technology Areas Research Pathways

Geologic Storage Technology Area

(Storage Technologies and Simulation and Risk Assessment)

- Wellbore construction and materials
- Mitigation technologies for wells and natural pathways
- Fluid flow, reservoir pressure, and water management
- Geochemical effects on formation, brine, and microbial communities
- Geomechanical impacts on reservoirs- seals and basin-scale coupled models; microseismic monitoring
- Risk Assessment databases and integration into operational design and monitoring

Monitoring, Verification, Accounting & Assessment (MVAA) Technology Area

- Atmospheric Monitoring and remote sensing technologies
- Near -Surface Monitoring of soils and vadose zone
- Subsurface Monitoring in and near injection zone

CO₂ Use/Reuse Technology Area

- Chemicals, plastics, minerals and cements (building products)
- Enhanced hydrocarbon recovery
- Other possible uses

Carbon Storage Program Collaborating to Address Technical Issues

Focus Area for Carbon Sequestration Science

- National Carbon Sequestration Database (NATCARB)
- Energy Data Exchange
- Research on Storage Reservoirs, Seal
 Integrity, MVA technologies,
 Computational and Experimental Methods,
 CO₂ Utilization

Supporting Mechanisms

- Interagency and State Coordination
- ARRA Site Characterization and CCS
 Training Centers
- Systems and Benefits Analysis
- University and Research Laboratory
 Collaboration

Global Collaborations

- Leveraging Expertise with
 International CCS Projects
- IEAGHG R&D Program
- Carbon Sequestration Leadership Forum
- London Convention/London Protocol
- North American Carbon Atlas
 Partnership
- U.S.-China Clean Energy Research
 Center

