Gallium Oxide Nano-structures for High Temperature Sensors

Ernesto Rubio (Ph.D); S.K. Samala (MS)

C.V. Ramana (PI) Mechanical Engineering, University of Texas at El Paso

Program Manager: Richard Dunst, NETL, DOE Project: DE-FE0007225 Project Period: 10/01/2011 to 09/31/2014

OUTLINE:

- ✤Introduction
- Research Objectives
- Experiments:
 - **G**Fabrication
 - Characterization
 - Sensor Testing
- Results and Discussion:
 - **\Box** Pure Ga₂O₃ Films (PVD)
 - □Tungsten (W)-doped Ga₂O₃ Films (PVD)
 - Sensor Performance
- Summary & Future Work

INTRODUCTION

Introduction

3 main combustion products:

CO
O2
These two gases provide a measure of the completeness of combustion

 NOx
 This gas measures the main controllable pollutant from the combustion

- Types of Oxygen Sensors
- 1. Potentiometric:
 - YSZ sensor based on Nernst Principle
- 2. Amperometric:
 - YSZ sensor based on Polarographic Oxygen Pumping
- 3. Semiconducting Metal Oxides
 - TiO₂, Ga₂O₃, SnO₂, based on Defect Induced Conductance Variation

Gallium Oxide

- 5 Polymorphs: α , β , γ , ϵ , and σ
- Wide band gap (>5 eV) semiconductor
- High thermal and chemical stability (T_m: 1725 °C)
- Due to a high melting point and stable structure, it is one of the most suitable materials for high temperature gas sensing.
- Doping with appropriate metallic ions can improve semiconducting properties for gas sensing.
- Gallium Oxide has demonstrated oxygen sensing properties at high temperatures >700 °C
- < 700 °C Ga-oxide exhibits sensitivity to reducing gases (CO, H₂)

Sensing Mechanism is governed by the following equation:

$$\sigma = \exp(\frac{-E_A}{kT})P_{O_2}^m$$

Where:

- **E**_A**= Activition Energy**
- T= Temperature
- σ= Electric Conductivity
- Po2= Partial Pressure of Oxygen
- k= Boltzman Constant
- m= Parameter determine by the
- defects and the type of carrier

Goals & Objectives

- Objective 1: To fabricate high- quality pure and doped Ga₂O₃ based materials and optimize conditions to produce unique architectures and morphology at the nano scale
- Objective 2: Derive the structure property relationships at the nanoscale dimensions and demonstrate enhanced high temperature oxygen sensing and stability
- Objective 3: To promote research and education in the area of sensors and controls
- Goal: Design the high temperature oxygen sensors (employing Ga₂O₃ nanostructures)

EXPERIMENTS

Materials

Gallium Oxide (Ga₂O₃) Target: 99.99% Pure Tungsten (W) Target: 99.99% Pure

Substrates:

Sapphire (Al₂O₃): (0001) Silicon (Si): (001)

Fabrication – Thin Films

RF magnetron sputtering Deposition Conditions

Fixed:

- Base pressure ~10⁻⁶ Torr
- Powers: $Ga_2O_3 \rightarrow 100 W$
- Target-Substrate distance: 7 cm
- Sputtering gas: Argon + O₂

Variables:

Sample set 1:

Tungsten Target Power (50 to 100W)

```
Substrate Temperature = 500 °C
```

Sample set 2:

Target Powers = const; Substrate temperature varied from RT to 800 °C

Testing and Experimentation

Results and Discussion

Ga₂O₃ - Chemical Analysis

Ga₂O₃ Sputtered Films exhibit deficit in gallium atomic percentage when substrate deposition temperature is lower than 200 °C. Ratio of 2-Ga to 3-O was obtained for the rest of the tested temperatures.

W-Doped Ga₂O₃

- Co-sputtering films (W/ Ga₂O₃) demonstrated crystallization of β- Ga₂O₃ structure (monoclinic)
- \blacktriangleright No WO₃ formation
- Increasing sputtering power, is proportional to increasing W-content

W-Doped Ga₂O₃

 Achieving full surface crystallinity W-doped Ga₂O₃ film at 800 °C, while only β- Ga₂O₃ phase is presented for all films. Grain formation is initialized at 600 °C.

Heat Treatment of Ga₂O₃ Based Films

β-phase is stable for all films after annealing; however, surface morphology suffer porous formation for Wdoped films

Thermal Stability

H₂ Sensitivity by Optical Absorption

Hot Gas Exposure

 Ga₂O₃ Films demonstrated sensing properties to Hydrogen and Oxygen at 600 °C. The higher the H₂ content, the higher the optical response.

Intensity vs. Gas Exposure Summary

- O₂ sensitivity increased from 10% to 15% of O₂ into Ar, but decrease again at 20%
- Sensitivity to gases was optimum in Ar environment, but small-to-non response in a mixture of Ar+Air

W-doped films showed being sensible to H₂ and O₂.

Oxygen Sensor Characteristics

- β-Ga₂O₃ showed oxygen sensitivity at 700 °C,
- As an n-type semiconductor the resistance of the film increased in the presence of oxygen.

Oxygen Sensor Characteristics

W-doped Ga₂O₃ films demonstrated improve time response, by reducing sensitivity of the sensor. W- doped films showed p-type semiconductor behavior

Comparison of W-doped Ga₂O₃ vs. Pure Ga₂O₃ Films

	W-doped Ga ₂ O ₃	Pure Ga ₂ O ₃
Response Time	~25 Seconds	~65 Seconds
Recovery Time (s)	~130 Seconds	~120 Seconds
Sensitivity	~3.1	~134
Base Resistance	4.3E+09 Ω	2.5Ε+06Ω
Max/Min Resistance	1.3E+09Ω	3.3E+08Ω

Sensitivity can be expressed as the following equation:

$$S = \frac{R_g}{R_b}$$

Where:

- S: Sensitivity of the Sensor
- R_g: is the electrical resistance at different analyte gas partial pressures
- R_b: is the resistance of the baseline when Ar was used

Future Work

- Testing cross-sensitivity behavior of Ga₂O₃ and W-Ga₂O₃ films at high temperature
- Test sputtering films inside a combustion chamber to evaluate the actual sensorial characteristics inside energy systems.

Impact

Journal Publications:

1. E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. 102, 191913 (2013).

2. A.K. Narayana Swamy, E. Shafirovich, and C.V. Ramana, Ceram. Inter. 39, 7223 (2013).

3. S.K. Samala, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan,

S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013).

4. CV Ramana, EJ Rubio, CD Barraza, A Miranda Gallardo, Samantha McPeak, Sushma

Kotru, JT Grant, J. Appl. Phys. 115, 043508 (2014).

Conference Presentations:

1. International Materials Research Congress (IMRC) August 11-August 15,2014

2. International Conference on Metallurgical Coatings and Thin Films, April 29 – May 3, 2013, San Diego, CA

3. AVS International Symposium, October 28 – November 2, 2012 Tampa, FL

4. Southwest Energy Symposium, March 24, 2012, El Paso, TX

5. International Conference on Metallurgical Coatings and Thin

Films, April 28 – May 2, 2014, San Diego, CA

6. AVS International Symposium, October 27 – November 1, 2013 Tampa, FL

Education & Training:

- 1. Ernesto J. Rubio: PhD (Full)
- A.K. Narayana Swamy: PhD (part of disseration)
- Sampath K. Samala: MS (thesis)
- 4. Abhilash Kongu: MS (non-thesis)

Summary and Conclusion

- Pure Ga₂O₃ and W-doped Ga₂O₃ films were fabricated and analyzed
- All films demonstrated the stable β -phase (monoclinic) of Ga₂O₃
- Ga₂O₃ films demonstrate to have structural and morphological stability, regardless the time of heat/exposure, while W-doped films performed morphological changes after initial thermal exposure with no further change afterwards.
- Pure Ga₂O₃ and W-doped Ga₂O₃ films demonstrated to be sensitive to oxygen at high temperatures, with improved time of response with the inclusion of tungsten
- W-doped Ga₂O₃ films showed optical sensor properties to O₂

Acknowledgments

- DOE-NETL
- Richard Dunst
- EMSL/PNNL, Richland, WA.
- SUNY- Prof. Michael Carpenter