

CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Plants

Shahin Zarghami, Hamid Arastoopour, Javad Abbasian, Emadoddin Abbasi, Emad Ghadirian

Illinois Institute of Technology, Chicago, IL

Current Program Objective

The overall objective of the program is to develop a Computational Fluid Dynamic (CFD) model and to perform CFD simulations to describe the heterogeneous gas-solid absorption and regeneration and WGS reactions in the context of multiphase CFD for a regenerative magnesium oxide-based (MgO-based) process for simultaneous removal of CO_2 and enhancement of H_2 production in coal gasification processes.

Scope of Work

The Project consists of the following four (4) tasks:

- <u>Task1</u>. Development of a CFD/PBE model accounting for the particle (sorbent) porosity distribution and of a numerical technique to solve the CFD/PBE model. (Completed)
- <u>Task2</u>. Determination of the key parameters of the absorption and regeneration and WGS reactions. (Close to Completion)
- <u>Task3</u>. CFD simulations of the regenerative carbon dioxide removal process. (Close to Completion)
- Task4. Development of preliminary base case design for scale up. (In Progress)

ILLINOIS INSTITUTE **Schematic Diagram of a Typical IGCC Process**

4/29

OF TECHNOLOGY

Regenerable Sorbent Approach

Process Economics is highly dependent on the CO₂ Sorbent properties

Sorbent Preparation Procedure

Experimental Setup: Dispersed Bed Reactor

Effect of Potassium Concentration on Sorbent Reactivity and Capacity

Effect of Temperature on Sorption

Effect of Steam on Reactivity

Effect of Steam on Reactivity

11/29

Effect of Temperature on Sorbent Decomposition

Effect of Steam on the Rate of Decomposition

Effect of CO₂ on sorbent Regenerability

14/29

Effect of Steam on Sorbent Regenerability and Durability

Effect of Potassium Concentration on Sorbent Capacity

ILLINOIS INSTITUTE

Variable Diffusivity Shrinking Core Model with Expanding product layer

VDSC Model Fit to Dispersed bed Experiments

Preliminary Base case design and Simulation Results

Full Loop Base Case Design

Location	Nominal gas Flow (g/s)
Adsorber	5
Loop seal 1	0.7
Loop seal 2	0.8
Regenerator	1
Move air	0.14

Mean Particle size = 185 μm Particle density = 2480 kg/m³

Based on DOE/ NETL Carbon Capture Unit. (Courtesy of Larry Shadle, NETL)

Hydrodynamics of the Absorber

NETL experimental images every 0.4-0.6 sec

Sequence of events:

(a) initially empty cone,(b) cone plugged with particles(c) final empty cone.

"Chugging occurs when a large mass of particles lifts from the fluidized bed and moves into the cone leading into the riser. The cone-constriction prevents particles from flowing smoothly into the riser and particles plug the riser pipe."

Clark et al., Powder Tech. 2013

Observed Fluidization Behavior in the Riser

Experimental data reported by Clark et al., Powder Tech. 2013

Hydrodynamics of the Regenerator

Batch Regenerator Performance

CO₂ concentration [=] kmol/m³

Effect of Frictional Pressure on L-Valve Hydrodynamics

Schaeffer Model

Schaeffer Model

ILLINOIS INSTITUTE

Comparison of Frictional Models

Schaeffer frictional model (which is based on coulomb law) has two major shortcomings:

- 1) It is discontinuous (solid volume fraction ~ 0.5)
- 2) It is under predicting the frictional viscosity

Schaeffer frictional model

$$\mu = \left\{ \begin{aligned} \epsilon_{s} < \epsilon_{s}^{\text{fr}} \Rightarrow \mu_{\text{kin}} + \mu_{\text{col}} \\ \epsilon_{s} \ge \epsilon_{s}^{\text{fr}} \Rightarrow \mu_{\text{kin}} + \mu_{\text{col}} + \mu_{\text{fr}} \end{aligned} \right\}$$

where

$$\mu_{\rm kin} = \frac{10\rho_{\rm S}d_{\rm S}\sqrt{\Theta_{\rm S}\pi}}{96\varepsilon_{\rm S}(1+e_{\rm SS})g_{\rm 0}} \cdot \left[1 + \frac{4}{5}g_{\rm 0}\varepsilon_{\rm S}(1+e_{\rm SS})\right]^2$$

$$\mu_{col} = \frac{4}{5} \varepsilon_{s} \rho_{s} d_{s} g_{0} (1 + e_{ss}) \sqrt{\left(\frac{\Theta_{s}}{\pi}\right)^{2}}$$
$$\mu_{fr} = \frac{P_{s} \sin \phi}{2\varepsilon_{s} \sqrt{II_{dD}}}$$

Continuous frictional model

$$\mu = \mu_{\rm kin} + \mu_{\rm col} + \mu_{\rm fr}$$

where

$$\mu_{\rm kin} = \frac{\sqrt{\pi\Theta_{\rm s}}(d_{\rm s}\rho_{\rm s}/24\varepsilon_{\rm s}g_{\rm o})(((5+2\varepsilon_{\rm s}g_{\rm o}(1+e_{\rm ss})(3e_{\rm ss}-1)))/((1+e_{\rm ss})(3-e_{\rm ss})))}{(1+(45\mu_{\rm g}/(6\varepsilon_{\rm s}g_{\rm o}d_{\rm s}\rho_{\rm s}\sqrt{(\Theta_{\rm s}/\pi)}(1+e_{\rm ss})(3e_{\rm ss}-1))))}$$
$$\mu_{\rm col} = \frac{4}{5}\varepsilon_{\rm s}\rho_{\rm s}g_{\rm o}(1+e_{\rm ss})\left(\frac{\mu_{\rm kin}}{\rho_{\rm s}} + d_{\rm s}\sqrt{\frac{\Theta_{\rm s}}{\pi}}\right)$$

Sundaresan frictional model

Laux frictional model

26/29

$$\mu_{\rm fr} = \frac{P_{\rm s} \sin^2 \varphi}{\varepsilon_{\rm s} \sqrt{4 \sin^2 \varphi \cdot ll_{\rm dD} + (\nabla \cdot \vec{u}_{\rm s})^2}} \qquad \qquad \mu_{\rm fr} = \mu_{\rm Laux} = \frac{6 \sin \varphi}{9 - \sin^2 \varphi} \frac{3 \left| \lambda \nabla \cdot \vec{u}_{\rm s} - \frac{P_{\rm s}}{\varepsilon_{\rm s}} \right|}{2\sqrt{3|ll_{\rm 2D}|}}$$

ILLINOIS INSTITUTE **Comparison of Frictional Models**

Schaeffer frictional model

Sundaresan frictional model

Laux frictional model

OF TECHNOLOGY

model	Prediction, Angle of Repose
Schaeffer	0
Sundaresan	21
Laux	29.5
Experiment	36

Investigation of proper modeling of very dense granular flows in the recirculation system of CFBs, Nikolopoulos et al, Particuology, 2012.

Work to be completed

- Effect of WGS reaction
- Modeling of combined absorption & WGS reactions
- Further modification of solid frictional viscosity.
- Completion of full loop simulation by including reaction and population balance model for density changes.

Thanks for your attention

Effect of Steam on Reactivity

ILLINOIS INSTITUT **Numerical Modeling: Conservation Equations**

Eulerian- Eulerian Approach in combination with the kinetic theory of granular flow

Assumptions: Uniform and constant particle size and density - Conservation of Mass

- gas phase:

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla (\varepsilon_g \rho_g v_g) = m_g$$

- solid phase

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla (\varepsilon_s \rho_s v_s) = \overset{\bullet}{m}_s$$

- Conservation of Momentum

- gas phase:

- solid phase

$$\frac{\partial}{\partial t}(\varepsilon_{g}\rho_{g}v_{g}) + \nabla (\varepsilon_{g}\rho_{g}v_{g}v_{g}) = -\varepsilon_{g}\nabla P + \nabla \tau_{g} + \varepsilon_{g}\rho_{g}g - \beta_{gs}(v_{g} - v_{s})$$
$$\frac{\partial}{\partial t}(\varepsilon_{s}\rho_{s}v_{s}) + \nabla (\varepsilon_{s}\rho_{s}v_{s}v_{s}) = -\varepsilon_{s}\nabla P - \nabla P_{s} + \nabla \tau_{s} + \varepsilon_{s}\rho_{s}g + \beta_{gs}(v_{g} - v_{s})$$

- Conservation of solid phase fluctuating Energy

- solid phase
$$\frac{3}{2} \left[\frac{\partial}{\partial t} (\varepsilon_{s} \rho_{s} \theta) + \nabla . (\varepsilon_{s} \rho_{s} \theta) v_{s} \right] = (-\nabla p_{s} I + \tau_{s}) : \nabla v_{s} + \nabla . (\kappa_{s} \nabla \theta) - \gamma_{s}$$

Generation of Diffusion dissipation energy due to solid

stress tensor

Abbasi and Arastoopour , CFB10, 2011 $_{\rm 31/29}$

OF TECHNOLOGY

Numerical Modeling: Drag Correlation

Gas-solid inter-phase exchange coefficient: EMMS model (Wang et al. 2004)

$$\omega(\varepsilon_g) = \begin{cases} -0.5760 + \frac{0.0214}{4(\varepsilon_g - 0.7463)^2 + 0.0044} & 0.74 < \varepsilon_g \le 0.82 \\ -0.0101 + \frac{0.0038}{4(\varepsilon_g - 0.7789)^2 + 0.0040} & 0.82 < \varepsilon_g \le 0.97 \\ -31.8295 + 32.8295\varepsilon_g & \varepsilon_g > 0.97 \end{cases}$$

