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Carbon Capture Simulation Initiative (CCSI)
To accelerate the path from concept (bench) to deployment (commercial power plant)
by lowering the technical risk in scale up.
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National Risk Assessment Partnership

National Risk Assessment Partnership (NRAP)

To accelerate the path to CCUS deployment through the use of science-based prediction
to quantify storage-security relationships, thereby building confidence in key decisions.



NRAP leverages DOE’s competency in science-based prediction for engineered-
natural systems to build confidence in the business case for CO, storage.

Building toolsets and the calibration & validation data to quantify ...
* Potential impacts related to release of CO, or brine from the storage reservoir

* Potential ground-motion impacts due to injection of CO,
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Quantitative Predictions for Planning...

» Capacity
* Long-term storage . .

S 8 Must predict fluid flow
* Performance . .
e Risk in porous & fractured media
* Monitoring strategies (reservoirs, seals, wells).
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Quantitative Predictions for Planning...

» Capacity
* Long-term storage . .

S 8 Must predict fluid flow
* Performance . .
e Risk in porous & fractured media
* Monitoring strategies (reservoirs, seals, wells).

Permeability is a first-order parameter in predicting fluid flow.
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Permeability varies over space and time.

8380 Seismic image through SACROC reservoir.
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SACROC core data represent
~10-10 of the total reservoir Seismic data do not provide high

volume. resolution or high certainty information
on permeability.

In conventional oil production, permeability fields are refined by
history-matching to data from 10’s to 1000’s of wells.




Different choices of permeability field
impact predictions on reservoir behavior.

Saturation Pressure Buildup
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from Wainwright et al. (2012) NRAP-TRS-111-002-2012
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NRAP Team Structure

Project Coordination Team

Project
Coordination
Team

— NETL team that supports the
coordination and integration of NRAP;
led by project coordinator

Technical
Leadership
Team

\
LANL [ LBNL ][ LLNL ][ NETL ]ﬁa Lab Technical Teams

— Multidisciplinary teams at each
organization that execute

Technical Working Groups research in support of NRAP goals
— Inter-lab teams that identify key research and plans; led by technical
needs and that ensure integration across coordinator

organizations and across working groups; led
by working group leader




Environmental Risk Profile

NRAP Organizational Structure N=TL
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Toolsets and Science Base (Data for Calibration/Validation)

NRAP Tasks and Toolsets

Targeted Assessments through Application

EPA Class VI Review?

FY2011

FY2012 FY2013

FY2014 FY2015

Reservoir

Release &
Transport

Groundwater

Components

Induced
Seismicity

Atmosphere

& ENERGY

Generation 1

flow only

2 reservoir classes

multiple reservoir simulators
stochastic permeability

wellbores (flow + phase change)

faults (flow + phase change)
1D flow into thief zones

TDS, pH

equilibrium geochemistry
2 endmember aquifers
CO,; & brine flux

hazard assessment

total flux only

N=TL

FY2020

Generation 2

flow & geomechanics

3 reservoir classes (EOR)
quantified trapping mechanisms
AP due to semi-permeable caprock

wells (flow+chemistry w/ varying
permeability; field-based
initial state, wellbore failure

faults/fractures/caprock
(flow+geomechanics; fault-
zone complexity)

porous flow through overburden

TDS, pH, metals
multiple leakage sources

hazard and damage risk

Pacific
Northwest

Generation 3

4 reservoir classes

wellbores/fractures (flow,

chemistry, geomechanics)

coupling of flow in wells,
faults, & porous media
heterogeneous overburden

TDS, pH, metals, organics
kinetic geochemistry
co-constituents

redox geochemistry

hazard, damage and
nuisance risk

atmospheric dispersion

AP

National Risk Assessment Partnership



NRAP’s approach to quantifying performance relies on
reduced-order models to probe uncertainty in the system.

5
Potential Potential
Leakage Impacts Ground-Motion Impacts
(Atmosphere; Groundwater) (Ground Acceleration)
Z ﬂ fluid propagation ﬂ seismic-wave propagation
]|1|1|1‘7‘_T"[’T“‘: Propas Propas
Release/Transport of Fluids Slip along a Fault Plane
ﬂ fluid propagation ﬂ stress/pressure propagation
Reservoir Reservoir
(plume/pressure evolution) (plume/pressure evolution)
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NRAP’s approach to quantifying performance relies on
reduced-order models to probe uncertainty in the system.

IAM
A. Divide system into Y ;
discrete components Energy Data eXchange . —_—
(e’di netl.doe ~govj . . . T
B. Develop detailed | ------ I
r component models | - ;
i I . E
that are validated : : E—
against lab/field data I +—— R

Impacted
Media

I

—

(System) Models

NRAP Integrated Assessment
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4"_ Release and
LT ] I _> Transport
C. Develop reduced-order : T
2 models (ROMs) that . U :
) - rapidly reproduce TTeemo T . «— Storage
component model . &—1— | Reservoir
"'ﬁTl“%ﬁw"wl‘{‘{‘J‘{\lr\ predictions rmmrenet
D. Link ROMs via integrated assessment
models (IAMs) to predict system
E. Develop strategic monitoring performance & risk; calibrate using
protocols that allow verification of lab/field data from NRAP and other
predicted system performance sources
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Approach to Development of Reduced-Order Models (ROMs):
Case Study at a Candidate Field Site

CO, Plume Pressure
() (b)

Sensitivity analysis
Identify key variables that
control component behavior

|

Detailed Simulations
Multiple simulations of detailed €
component models (reservoir,
wellbores, faults, aquifer)

|

ROM Development
* Look-up tables (LUTs)
Ly ° Response surfaces (e.g. via PSUADE)
 Artificial intelligence approaches
* Analytical relationships
(e.g., polynomial chaos expansion)

Define Key Parameters for ROM

suonejnhwis jsuiese
INOY 21epljen

Pressure

CO, Plume

from Wainwright et al. (2012) NRAP-TRS-111-002-2012
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Reduced-order models (ROMs) are used to allow rapid evaluation of
component behavior over conditions of interest.

C. Develop reduced-order models
(ROMs) that rapidly reproduce
component model predictions

* 4D (3D+time) to 3D
* Only key variables

* Finite-volume to simplified solution

(ot AP, 100y ci0° AP, 200yr

Northirg, m
‘ Horthing, m
Northing, m
Northizg, m

2 4 [

Essting, m x10* Easting, m x10* Essting, x10* Easting, m x10*

L0t SC02,20yr

o0t SCO2,50yr ot SCO2,100yr

Morthire, m
Horthing, m
. Northing, m
Horthirg, m

ROM focuses on P and saturation at reservoir-seal interface.
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Sensitivity analysis allows ROM to focus only on key variables.



NRAP is evaluating a range of approaches to
Reduced-Order Models (i.e., Rapid-Performance Models).

Lookup Table

Response Surface
(via PSUADE) 2 ]

Analytical Model X X X X
Polynomial Chaos Expansion X

Gaussian Regression X

Surrogate Reservoir Model (base on
A.l. methods)



Key NRAP Accomplishments: Building the Toolsets
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¢ Site-specific and adaptable ROMs
e Reservoirs (3 classes; 3 injection scenarios)

e Wellbores (open and cemented)
e Fractures (discrete and networks)
e Aquifers (two major types) I
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Reduced Order Models (ROMs) for Reservoirs

Purpose: Efficient prediction of P and S at reservoir-
seal interface over a range for the most sensitive
parameters

NRAP Tool & Method Development

e ROMs built using reservoir simulation results:
— Specific to site and injection conditions
— Injection through post-injection period

e ROMs developed for “real” scenarios,
but used to capture representative behavior
— Can be developed for specific sites
e 4 ROM approaches evaluated:
— Look up table (LUT)

— Surrogate reservoir model based on artificial
intelligence

Monitoring
Well

Injection

— Polynomial chaos expansion

— Gaussian process regression I
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Reduced Order Models (ROMs) for Wellbores

Purpose: Efficient prediction of brine/CO, flux given P and S at reservoir-seal interface

Cemented Wellbores
* Response surfaces based on FEHM & TOUGH2

* Functions of depth, permeability, diameter,
pressures, & saturations

* Decoupling of reservoir-well is valid when

K,en < 100k, ....ir & CO, saturations are high
CO; Flow Rate v
s,l()-’
2104 S
2 S
‘%10-*
T 1oe
107

% Flow Rate (kg/s) (FEHM)

FlowRate (kg/z) (ROM)
g 3§ 37

3

o 10t 1w 10t 10 10
Flow Rate (kyfs) (TOUGH2)

10710 10 10+ 10 102 107

Open Wellbores

* Response surfaces based on TOUGH2 with drift-
flux model

* Functions of depth, diameter, salinity,
pressures, & saturations

CO; Flow Rate

Brine Flow Rate

Xt
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Development of Calibration Data for Wellbores

Effective Permeability Wellbore Completion Statistics

* Development of permeability distributions * Case study at California oil/gas reservoir

based on available data
* Data mining at state-level

964 Wells based on SCP in Alberta

60,000

Frequency

Frequency
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Evaluation of Potential Impacts to Flow Predictions for Wellbores

Impact of Geomechanics &

Impact of Horizontal Flow Geochemisty

e Thief zones lower flow rates * Physics-based models to predict coupled

) . . effects on fractures in cements
* Higher seal permeability may increase flow

rates * Experimental studies on reactive flow on
fractures and interfaces
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Surface
4 l Ratio of CO, flow for
m 8 seal permeability (D)
o7 of107 relative to 107®
%6
o
Us .
4 .
s L
=]
T3 i
82 I .
L ] —— .- - - =
& 1 ! =
0.1 1 10 100 1000 P g
«Cement o
—~ ‘lf — Well Permeability (darcies) 3

CO, reservoir

National Risk Assessment Partnership




Key NRAP Accomplishments: Building the Science Base

¢ Developed underpinning, physics-based models for wellbores and

fra Ctu res 7500 2.000000E+02, yr
TDS
TDS, mg/L
e Demonstrated validity and limitations of de-coupling assumption in 19008
7000 [ MCL = 500 mg/L 1.56E.404
integrated assessment models i e
1.05E+04
8.80E+03
. . . E B 7.;0;«»03
e Established “no-impact” threshold values for two major classes of > 50or Soes
aquifers
6000 =
e Expanded science base and data needed for model calibration No Impact L 420 mg/L
e Lab studies on cement, shale, aquifers o IV S
. 4. . . - X
e Geostatistical studies on wellbore characteristics "
groundwater

e Natural analog studies on reservoirs/aquifers

g <y
£, A »
g ‘ Alberta Basin
wellbores fractures

1 L 1
10 10=  10® 10" 107t 10 10 10
Permeabilily (m?)
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Key NRAP Accomplishments: Applying the Toolsets

. e as . . . o2
e Generated first quantitative risk profiles for long-term behavior 22 [ .. ... R
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Key NRAP Accomplishments/Results: Induced Seismicity

Tool & Method Development

e Developed a probabilistic seismic hazard assessment
(PSHA) tool for induced seismicity

— adapted widely accepted conventional PSHA approach

e Extending development to assess damage and
nuisance (felt event) risks
— demonstration application to realistic CO, injection scenarios based
on In Salah (Algeria)
General Trends & Relationships

e Rates of occurrence and sizes of earthquakes are
determined by tectonic stress and reservoir pressure

— sensitive to fault permeability and a few key parameters in the law
governing the evolution of fault frictional strength

* Risk of CO, leakage may be coupled to slip on faults
during earthquakes
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NRAP FY14 Overview

NRAP Product Areas

| EPA Review

Q1

Q2

Containment

Gen 3
Leakage

FY14
Q3 Q4
AoOR Tool/
Meth.
PISC Tool/
Meth.

Level 1 TRS

Gen 3
Groundwater
Groundwater IAM
|mpact -
Site-Specific
i H Monitoring
Monitoring & Selvset
Mitigation
Field-
Calibrated
i ici IAM
Induced Seismicity

e Complete third generation toolsets for
quantifying long-term performance

e AoR & PISC tools for facilitating dialog
during the permitting process

e Risk-based monitoring protocols for
verification (operators, regulators, ...)

e Field-calibrated toolset for forecasting
induced seismic risk to aid operators
and regulators (e.g., confidence in
injection envelops)

N=TL



Using simulations to predict behavior of reservoirs for
various scenarios and conditions (AoR and PISC).

e Two underlying questions
> How does a reservoir’s performance change as a function of injection volumes and rates?

> How does a reservoir respond as a function of time when injection stops?

e Two performance metrics for the reservoir tie to potential risks of concern
> Risks of concern include ensuring protection of groundwater and avoiding induced seismicity

> Performance metrics include evolution of pressure and CO, plumes

e Near-term focus
> Use reservoir simulators to predict pressure and CO, distributions
> Focus on two major reservoir categories
k

> Explore sensitivity to key variable/unknown characteristics (¢, k etc.)

reservoir "“seal’

> Determine response as a function of injection rate and volume

> Calculate large matrix of scenarios; analyze pooled results to identify general trends

e Longer-term focus
> Apply to other reservoir types
> Use data to develop a streamlined protocol for an AOR and PISC tool
> Evaluate simplified analytical model vs. reduced-order model based on reservoir simulations

> Evaluate tiered risk-based AoR Framework

U.S. DEPARTMENT OF udy = Pa. Sz -
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Using science-based prediction of engineered—natural systems
to inform decisions for CO, storage

Questions?

EST.1943 Pacific

Northwest
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Technical Team Leads

frreeeer ‘m lL
L

* LBNL Team Lead * LLNL Team Lead
— Jens Birkholzer — Susan Carroll N=TL
* Monitoring Lead * Induced-Seismicity Lead Beglona Univery Alasce
— Tom Daley — Josh White e NETL Team Lead &
Reservoir Lead
/ — Grant Bromhal
y f’;g HAaamng N,;;;f/‘fe . e Migration Pathways
TR — Brian Strazisar
* LANL Team Lead * PNNL Team Lead
— Rajesh Pawar — Chris Brown
e System-Modeling Lead e Groundwater Lead
— Rajesh Pawar — Diana Bacon
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e Unbound Sandstone Reservoir
> Sandstone formation
> No lateral structural trap
> Horizontal or dipping units bound by caprock
> Homogeneous, moderate permeability

e Based on generic reservoir off structure
> Initial geologic model developed in TOUGH2

e Single, vertical injector
> Perforated along entire reservoir interval
> Constant-rate injection
> Varying Injection Rates
> Varying Injection Times
> Post Injection: Monitoring pressures and CO2
at various time points

= pa) -
--% &L . k%&]ém Pacific

U.S. DEPARTMENT OF L
ENERGY e

Initial Reservoirs for AoR and PISC Studies

Grid Thickneas (8) e P e

e Domal, Multilayer Sandstone Reservoir
> Multilayer sandstone formation
> Domed structural bound by shale caprock
> Heterogenous, variable layer permeability

e Based on candidate site from RCSP, ARRA

» Citronelle-like conditions in reservoir

> Initial geologic model leveraged from RCSP and
ARRA project and developed in CMG

e Single, vertical injector
> Multiple perforations along reservoir interval
> Constant rate injection with pressure constraint
> Varying Injection Rates
> Varying Injection Times

> Post Injection: Monitoring pressures and CO2 at
various time points

NRAP

National Risk Assessment Partnership

Northwest



