Novel Low-Cost and Environmentally-Friendly Synthesis of Core-Shell Structured Micro-Particles for Fossil Energy Applications

Howard University

Jason Matthews, PhD

The Ohio State University Cheng Chung

Project Team

Howard University (MOCVD Particle Growth)

PI-Jason Matthews, PhD

- Abu Kamara (G)
- Alyssa Buchannan (U)

The Ohio State University (Ionic Diffusion) L.S. Fan, PhD Cheng Chung (G) Liang Zeng, PhD Zhenchao Sun, PhD

Background

• Core-shell structure exhibits high surface area and catalytic-like properties Shell

- Conventional coating techniques for core-shell particles require both high capital and operating cost
- Some coating techniques involve toxic solvent.

Core

Proposed Synthetic Methods

- Metal Organic Chemical Vapor Deposition
	- Utilize a low cost hot walled reactor as an alternate route for the preparation of core-shell structures.
- Ionic Diffusion via Redox Cycles
	- Utilize the movement of atoms during redox, forming a core-shell like structure
	- OSU has rich experience with particle development for chemical looping system
		- In depth testing of different metal oxides particles under redox environment

Potential Significance

- Reduce the cost of synthesis
- Improve the performance of catalytic fossil fuel conversion, chemical looping combustion/gasification and sorbent-based fossil fuel applications
- Environmental friendly since no solvent is required for ionic diffusion

Chemical Looping

Fig. 1. General scheme of a Chemical-Looping Combustion system for gaseous fuels.

Statement of Project Objectives

- Synthesize stronger and more chemically reactive particles for use in fossil energy applications
- Synthesize and characterize $Fe₂O₃$ -shell/Al₂O₃-core microparticles prepared via the cyclic ionic diffusion and MOCVD methods.
- Gain control of shell thickness
- Comparison of morphology, mechanical strength, and reactivity of synthesized core-shell structured particles synthesized via vapor deposition and ionic diffusion
- • Demonstrate the applicability of proposed method by preparing and test a CaO-core/Fe₂O₃-shell particle

Metal-Organic Chemical Vapor Deposition (MOCVD)

Horizontal hot-wall CVD reactor

Vaporization and Transport of Precursor Molecules into Reactor

Diffusion of Precursor Molecules to the Surface

Adsorption of Precursor Molecules to Surface

Decomposition of Precursor and Incorporation into Solid Films

Recombination of Molecular Byproducts and Desorption into Gas Phase

MOCVD

Temperature (C)

Tunable β‐ketoiminate ligand backbone TGA Analysis of ^a MOCVD Precursor

Advantages of MOCVD

- Films with uniform thickness under mild conditions (<700°C)
- High quality thin films with less impurities
- High growth rate
- Highly crystalline films

MOCVDPrecursor Requirements

Volatile and thermally stable

- Produce uniform and reproducible coatings
- Decompose to afford high purity material
- \square No premature decomposition of the precursor prior to reaching the substrate

More attractive than their β-diketonate analogs:

Volatile and thermally stable

 \Box Ability to tune the volatility and thermal stability by varying the R groups

β -Ketoimine Synthesis

Synthesis of Fe(III) Complex

 R' R'' R'' R_{C} R' R' O R ² O R ² R ² O 2. FeCl3/ $\rm H_2O$

1. KOH/EtOH

MOCVD Coating of Particles

Future Work

- Continued preparation of volatile and thermally stable precursors.
- Growth and characterization of core shell particles via MOCVD.
- Defining the relationship between CVD reaction time and shell thickness.

Technical Approach: Synthesis

• Ionic Diffusion via Cyclic Redox Cycles

Technical Approach - OSU

- \bullet • Synthesis of $Fe₂O₃$ Shell/Al₂O₃ Core via cyclic redox reaction
	- Confirmation from SEM and EDX analysis \longleftarrow Completed
- \bullet Application of 2-D diffusion model and diffusion mechanism study
- Control of shell thickness and synthesis optimization
	- Amount of iron loading
	- Number of cycles required
- Performance characterization for both synthesis method (Fe_2O_3/Al_2O_3)
	- Reactivity comparison via TGA
	- Mechanical Strength measurement
	- Surface Area comparison
- \bullet • Synthesis of $Fe₂O₃$ Shell/CaO Core particle
	- Universal application of the redox cycle synthesis method

In Progress

Parametric Study

• Percent Iron Loading

Homogeneous 20/80 Fe/Al Particle Homogeneous 40/60 Fe/Al Particle

Parametric Study

• Particle Size

 $D = 0.35$ mm

 $D = 2.00$ mm

Characterization

SEM Analysis

EDAX Analysis

Both Fe and Al are detected

Cyclic Redox via TGA

Condition: 100 cycles. Reduction under Hydrogen. Oxidation under Air.

Cyclic Redox via TGA

- Wave-like Profile
	- –— Increased Reactivity
		- Migration of iron atoms toward the surface
	- – Decrease in Reactivity
		- Sintering of surface iron oxide

Characterization

• Post Cyclic Redox

Characterization

• Post Cyclic Redox

EDAX Mapping reveal concentrated Alumina under fractured shell

Summary-OSU

- Successful formation of core-shell particle via cyclic redox
- Homogeneous particles of various parameters have been prepared
- Two competing phenomenon has been proposed. Further investigation is needed

Future Work-OSU

- The competing phenomena during redox cycles will be examined by varying the number of cycles and end state.
- TGA profile for the larger particle will also be studied.
- Synthesis of varying degree iron loaded coreshell particles will continue in order to study the effect of iron loading.

Acknowledgements

- DOE-NETL DOE-FE0011515
- Howard University Graduate School
- Ohio State University