

Utilization of CO₂ in High-Performance Building and Infrastructure Products

Nicholas DeCristofaro

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Mtg Developing the Technologies and Infrastructure for CCS

August 12-14, 2014

DE-FE0004222

Do not copy or distribute: Proprietary and confidential information of Solidia Technologies, Inc.

What if this...became this?

What if CO₂ ...meant green?

PRESENTATION OUTLINE

- Project Overview
- Project Benefit Statement
- Technical Status
- Accomplishments
- Summary
 - Appendix
 - Organization Chart
 - Gantt Chart

Project Overview – Goals

The development of alternative construction materials that can replace ordinary Portland cement (OPC) while consuming less energy and generating less CO₂

Why?

- Cement industry: 2nd largest industrial emitter of CO₂ (>2.4 Gt annually, or~5% anthropogenic CO₂ emissions)
- Concrete: 2nd most utilized substance on earth (~20 Gt annually, 2nd only to water)

How?

- Replace OPC with mineral or synthetic Wallastonite (CaSiO₃)
- Cure CaSiO₃-based concrete with CO₂

Criteria

- Reduce the CO₂ footprint of concrete by 30-90%
- CO₂-cured concrete properties > hydrated concrete properties

Project Benefits Statement

The research project will demonstrate a new construction material that can replace conventional concrete.

New Construction Material	 reduces or eliminates the CO₂ emissions associated with cement production permanently sequesters CO₂ (in the form of CaCO₃) during concrete curing preserves the existing infrastructures of the cement and concrete industries 	
CO ₂ emissions reduction & sequestration	 When demonstrated and applied industry-wide, will enable: reduction CO₂ emissions reduction of up to 0.7 Gt/yr sequestration CO₂ up to 0.9 Gt/yr 	
Supports Carbon Storage Program goals	Supports effort to develop / validate technologies that can assure 99% storage effectiveness.	

Δ

5

Technical Status Background

Original Premise	 Mineral wollastonite (CaSiO₃) can be used as cementious materials in CO₂-cured concrete products: Carbon-neutral, high-performance concrete products, BUT Address 0.1% of OPC market Reduce Global CO₂ emissions by ~2 Mt/yr 	
Revised Premise	 Synthesized calcium silicate cement (Solidia Cement[™]) can be used: Made with processing equipment (rotary kilns) & raw materials (limestone, sand, clay) used in OPC production CO₂ emissions ↓ 250 kg/tonne of cement (30%) Ability to sequester 300 kg of CO₂/tonne of cement in concrete 	
Thus	 Address entire OPC market Reduce global CO₂ emissions by ~1.6 Gt/yr 	

Accomplishments

Calcium Silicate Cement Manufacturing

CO₂-Curing Technology

Drying

Drying & Curing

CO₂-Curing Optimization

CO₂-curing
 system modeling

 \mathbf{O}

 Applications development

 \bigcirc

Calcium Silicate Cement Manufacturing > 5,000 tonnes of Solidia Cement produced and inventoried

OPC manufacturing facility	Full-scale Production of Calcium Silicate Cement (Solidia Cement™)	
	March 2014 at Lafarge, Whitehall, PA	
	Raw materials: Quarry rock (lime) Sand (silica)	
Kiln view 1200°C "Hot Zone"	Firing temperature = 1200°C (vs 1450°C for OPC) Coal Recycled plastic Recycled tires	
	Energy usage ↓ 30% vs OPC	
	CO₂ emissions ↓ 30% vs OPC	

CO₂-Curing Technology Drying

CO₂-curing and drying are linked:

- Presence of liquid water critical to dissolve Ca & CO₂
- Drying follows classical behavior of porous solids
 - constant rate drying period evaporation at surface
 - falling rate drying periods evaporation in pores

 $H_2O_{(1)}$ $CaSiO_3 + CO_2 \rightarrow SiO_2 + CaCO_3$

Evidence of Reaction Fronts

8

Slab

 \mathbf{O}

9

CO₂-Curing Technology Drying & Curing

CO₂-Curing Optimization Paver Modeling

Based on commercial curing chamber for concrete blocks

- 17' h x 12' w x 72' d
- Block dimensions (12" x 2.375" x 6" with 0.5" gap)
- Computational fluid dynamic "silver" model
 - 17' h x 6' w x 4' d
 - 14 shelves

Physical replica

- ~6' h x 6' w x 4' d
- 5 shelves

CFD Model & Physical Replica Closely Match

Relative Humidity

10

Gas Flow Side View

 70
 76

 74
 72

 70
 66

 66
 66

 64
 62

 65
 66

 66
 66

 66
 66

 66
 66

 66
 66

 66
 66

 66
 66

 66
 66

 66
 66

 67
 60

 68
 60

 56
 60

Contours of Relative Humidity (%

54 52

Velocity Vectors Colored By Velocity Magnitude (m/s

CO₂-Curing Optimization Railroad Tie

Forming Using Concrete Vibrator

Flipping the Mold to Release Uncured Tie

12

CO₂-Curing Optimization Hollow Core Slab

Do not copy or distribute: Proprietary and confidential information of Solidia Technologies, Inc.

Summary Key Findings / Lessons Learned

Calcium Silicate cement (Solidia Cement) now available on commercial scale

 Able to support commercial development of CO₂cured concrete Water / CO₂ concentration & distribution controls concrete curing rate on macroscopic (bulk) scale

 Drying & CO₂-curing of concrete closely linked Management of the curing atmosphere parameters permits economical, CO₂curing of bulk concrete parts

 Temperature, humidity, flow rate

Summary Future Plans

Transfer CO₂-curing processes developed in NETL De-FE0004222 to commercial concrete manufacturing Demonstration of bulk concrete curing in raw & reconditioned flue gas

Appendix

15

 \bullet

Organization Chart

 Rutgers University Materials science Analytical techniques 			 Solidia Technologies Cement & concrete production/analysis Applications 	
		Task		
 R. Riman, Ph.D. Mat. Sci. 	Project Mgmt.	1	L. McCandlish, Ph.D. Chem.	Proj. Mgmt.
		2	 G. Badiozamani, MBA J. Krishnanan, MBA 	Market / Impact Analysis
 M. Bitello, grad student, Mat. Sci. Q. Li, Ph.D. Chem. R. Riman 	General Equipment/Milling Reaction kinertics Analytical techniques	3.1 thru 3.9	 L. McCandlish 	CO ₂ sequestration chemistry
		3.10 thru 3.12	 N. DeCristofaro, Ph.D. Mat. Sci. O. Deo Ph.D. CE X. Hu, Ph.D. Chem. E. L. McCandlish D. Ravikumar, Ph.D. CE D. Paten K. Smith R. Boylan, MBA 	General Particle size effects Process modeling Aerated concrete Hollow core slab Railroad tie Pavers and blocks Equipment Applications marketing

Gantt Chart

Solidia Technologies®

Where (CO2) means green and sustainability meets profitability.[™]

