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How well is the reservoir caprock interface described by a discrete boundary
with simple (uniform) flow conditions?

How do inevitable structural, diagenetic and depositional heterogeneities at
the interface influence transmission of CO, into the caprock?

Exposure of analog caprock-reservoir interface cut by fault
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Importance of Scale:
Examples of Interface
Heterogeneity

*Depositional
*Structural
*Diagenetic

Focus for today’s talk
Fracture Patterns
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Benefits to Program

Program goals being
addressed:

— Develop technologies that will
support industries’ ability to
predict CO, storage capacity
in geologic formations to
within =30 percent.

— Develop technologies to
demonstrate that 99 percent of
injected CO, remains in the
injection zones.

Project benefits:

— QOur results have the potential
to significantly improve
prediction of containment
system effectiveness.

Project Overview:

Goals:

To determine the influence of
diagenetic and structural features of
the reservoir/caprock interface on
transmission of CO, into and through
the caprock.

Objectives

Constrain potential interface
transmissivity attending certain
features (i.e. deformation band faults)

Place occurrences within structural
context, thus useful for risk
assessment/site characterization
efforts



Technical Status

Initial fieldwork to identify significant
interface features and select study
sites

Collection of geological and
petrophysical data from outcrop
(Navajo/Carmel, Slickrock/Earthy
facies in Entrada) and core (Mt.
Simon/Eau Claire)

Use geological and petrophysical
data to construct conceptual
geologic and permeability models

Modeling efforts
— Single phase
— Multiphase

Structural framework to predict
likelihood of encountering at
sequestration sites

Reservoir-caprock analog and outcrop 6
measurement of permeability
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Study Units: Overview (cont’d)
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l. Relating Fracture Conductivity to Structural Position
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Curvature changes
across fold limbs that
creates changes in
fracture patterns

*Transverse fracture
swarms 100’s m long

*Concentrations of
fractures near faults
create pathways up
to a km long

*Fracture orientation
wrt stress tensor
controls fracture
conductivity
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Il. Effects of Deformation Bands

Host thin section with
the photomicrographed
zone labeled in black

* Most common strain localization
feature found in porous sandstones
(e.g., Navajo, Entrada, Mt. Simon)

* Form by: grain reorganization
and/or comminution

» Typically 2 — 5 orders of magnitude
lower K than host sand

« Can form capillary seals to
supercritical CO,



Deformation Bands:

Localization in only certain sandstone
facies (weak, highly porous)

«Constitutively a “transitional” behavior
as seen in laboratory experiments

*Can compartmentalize sandstones,
hinder injectivity

Laboratory shear bands in weak Mt
Simon Facies
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Transition to Fractures

| <1 to 30 mm thick mineralized fracture
E Inferred path of mineralized fracture

1 to 7 mm thick non-mineralized

« Deformation band faults |
transition to shear fractures ;...
at interface

» Diagenetic alteration show
these were open fractures

— Bleaching

— Mineralization
« Carbonate cementation

» Fe-oxide pseudomorphs of
pyrite
* Hydrocarbon inclusions

« Can infer aperture history
through petrography



Deformation Band/Fracture Transition,
Slickrock/Earthy Entrada Facies

1 to 5 cm thick zone of
deformation bands

2 to 30 mm thick zone of g
i deformation bands

1 to 8 mm thick calcite
mineralized fracture

<1 to 1 mm thick calcite
mineralized fracture

1 to 2 mm thick calcite

I Small normal fault with
mineralized fracture

Bleached zone

Interface
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2D Single-Phase and Multiphase FE Modeling
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Modeling Questions

1. Effect of small-scale architecture

a) Fracture at Interface

Fracture
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Reservoir

Deformation Band b) Deformation Band at Interface
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Effect of Architecture
(single phase results)

 When deformation band is at
interface:

- Greater compartmentalization

- 2 orders of magnitude lower flux
through fracture

 When fracture penetrates interface:
- Greater flux through caprock

-

ISS 1, Def Band at Interface Offset, 0.04 years, 06/09/13

ISS 1, Fracture at Interface Offset, 0.04 years, 06/09/13




a) Multi-Phase b) Multi-Phase

100% Fracture Penetration 100% Fracture Penetration
Fracture at Interface D_ef. Band at Interface
MUItlphase 5 Tlm = 0.13 days Time = 0.13 days
Results
4
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lll. Porosity Facies

*Detailed Petrography

*Mercury porosimmetry
(here expressed as
saturation versus pore
diameter)

Eau Claire Caprock )

Mt Simon Reservoir =)
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to pore volumes
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On CO2 Capillary seals and
residual trapping:

sLarge capillary contrast at the
interface between Eau Claire and Mt
Simon

Mt Simon has an extraordinary
degree of sub-cm heterogeneity in
pore- and pore-throat sizes

*Increased pore-body/pore-throat size
ratio supports greater residual

trapping

On Mt Simon storage potential:

*Connected porosity in Mt Simon
Reservoir facies due to gypsum and
(lesser) feldspar dissolution

*Evaporite dissolution thought to be
from Pleistocene (ice sheet
hydrology)




Accomplishments to Date

— Navajo/Carmel, Earthy/Slickrock Entrada

« Geologic description and conceptual permeability models of
interfaces for 6 Utah sites

« 10s of km fracture density and orientation data
 Single- and Multiphase phase modeling results

 Detailed structure yields permeability distributions; may not
“homogenize”

— Mt. Simon/Eau Claire

« Core description, petrographic analysis and mercury porosimetry
completed for 180 ft of Mt. Simon/Eau Claire (Dallas Center
Structure, central lowa)

 Implications for capillary sealing and residual trapping
» Diagenesis controls spatial reservoir quality
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Appendix
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Gantt Chart

Task 7: Task Integration

Task 6: THMC Modeling

Task 5: Mechanics Modeling
Task 4: Structural Analysis
Task 3: Sedimentary Analysis

Task 2: Fieldwork

—
—
—
—
—
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Task 1: Proj. Mngmt.
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