

NATIONAL ENERGY TECHNOLOGY LABORATORY

Catalytic Conversion of CO₂ to C1 Chemicals

Christopher Matranga, Molecular Science Division, NETL

Catalytic CO₂ Utilization Team Members & Collaborators:

Dominic Alfonso, Xingyi Deng, Doug Kauffman, Junseok Lee, Jonathan Lekse, Dan Sorescu, Congjun Wang James Lewis (WVU), Rongchao Jin (CMU), Ken Jordan (PITT), Sittichai Natesakhawat (PITT)

CO₂ Conversion to C1 Industrial Chemicals CO_2 Geothermal Heat Η, Catalyst **Solar-Heating Or Photo-driven** and/or H₂O Wind-Electric **Formic Acid Formaldehyde Methanol** Methane **Approx** 484 M ton 3.6 M ton 25 K Ton¹ 3 M ton Yearly (\$210,000 M) (\$1440 M) (\$25 M) (\$720 M) Market Fuel/MTG **Urea Resins** Leather. Fuel Uses Formaldehyde Pulp **Phenol Resins Acetic Acid**

Global Formic Acid Market: 0.5 M Ton (\$750 M) ENERGY TECHNOLOGY LABORATORY

Project Structure

Photocatalytic Systems

- Heterostructured Photocatalysts for CO₂ Reduction
- Symmetry Breaking and High Throughput Computational Screening of Delafossites for the Photocatalytic Reduction of CO₂
- Scanning Tunneling Microscopy and Dispersion-corrected Density Functional Theory Studies of TiO₂ Surfaces

Electrocatalytic Systems

- Electronic Structure and Catalytic Activity of Au₂₅ Clusters
- Thermal Catalytic Systems
 - Atomic Structure and Catalytic Activity of Cu/ZnO-Based Materials

Challenge

Develop high efficiency catalyst with low overpotential and good product selectivity

NETL Catalyst Accomplishes This!

Atomically Precise Au_n clusters (n < ~200) for CO₂ Conversion

NATIONAL ENERGY TECHNOLOGY LABORATORY

* Figures From R. Jin, Nanoscale, 2010, 2, 343-362 & JACS 2008

Unprecented Catalytic Efficiency

Kauffman, et, al. J. Am. Chem. Soc. 2012, 134 (24), 10237-10243.

Optical Spectra of Isolated Au₂₅^q charge states

- Crystal structure analysis and XPS show absence of oxides on Au₂₅⁰ and Au₂₅⁺
- Cluster's structure and charge state retained on CB support and during reactions

Charge State-Dependent CO₂ Reduction

 $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$

- Negative clusters enhance CO₂ reduction
- Proton adsorption is enhanced on negative clusters
- TOF (exp) correlates with ab initio (DFT) binding energies

Charge State-Dependent CO Oxidation

 $\text{CO} + 2\text{OH}^{-} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + 2\text{e}^{-}$

- Positive clusters enhance CO oxidation
- Hydroxl adsorption is enhanced on positive clusters
- TOF (exp) correlates with ab initio (DFT) binding energies

NETL 9

Charge State Dependent O₂ Reduction

 $O_2 + 2 H_2O + + 4e^- → 4 OH^ O_2 + H_2O + + 2e^- → OH^- + OOH^-$

- Negative clusters enhance O₂ reduction
- Hydroxl adsorption is enhanced on positive clusters & blocks active sites (no desorption)
- TOF (exp) correlates with ab initio (DFT) binding energies

Charged Reactants, Intermediates, & Products are Ubiquitous in Chemistry

- OH⁻, H⁺ and Mⁿ⁺ are UBIQUITOUS in electrochemical and photochemical reactions
- Potential Applications:
 - PEM Fuel Cells
 - Energy Storage & Battery Chemistry
 - General Catalysis

Reaction	Potential, V
$2H^+ + 2e \rightleftharpoons H_2$	0.0000
$2H_2O + 2e \rightleftharpoons H_2 + 2OH^-$	-0.828
$H_2O_2 + 2H^+ + 2e \rightleftharpoons 2H_2O$	1.763
$2Hg^{2+} + 2e \rightleftharpoons Hg_2^{2+}$	0.9110
$Hg_2^{2+} + 2e \rightleftharpoons 2Hg$	0.7960
$Hg_2Cl_2 + 2e \rightleftharpoons 2Hg + 2Cl^-$	0.26816
$Hg_2Cl_2 + 2e \rightleftharpoons 2Hg + 2Cl^-$ (sat'd. KCl)	0.2415
$HgO + H_2O + 2e \rightleftharpoons Hg + 2OH^-$	0.0977
$Hg_2SO_4 + 2e \rightleftharpoons 2Hg + SO_4^2$	0.613
$I_2 + 2e \rightleftharpoons 2I^-$	0.5355
$I_3^- + 2e \rightleftharpoons 3I^-$	0.536
$\mathbf{K}^+ + \mathbf{e} \rightleftharpoons \mathbf{K}$	-2.925
$Li^+ + e \rightleftharpoons Li$	-3.045
$Mg^{2+} + 2e \rightleftharpoons Mg$	-2.356
$Mn^{2+} + 2e \rightleftharpoons Mn$	-1.18
$Mn^{3+} + e \rightleftharpoons Mn^{2+}$	1.5
$MnO_2 + 4H^+ + 2e \rightleftharpoons Mn^{2+} + 2H_2O$	1.23
$MnO_4^- + 8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O$	1.51
$Na^+ + e \rightleftharpoons Na$	-2.714
$Ni^{2+} + 2e \rightleftharpoons Ni$	-0.257
$Ni(OH)_2 + 2e \rightleftharpoons Ni + 2OH^-$	-0.72
$O_2 + 2H^+ + 2e \rightleftharpoons H_2O_2$	0.695
$O_2 + 4H^+ + 4e \rightleftharpoons 2H_2O$	1.229
$O_2 + 2H_2O + 4e \rightleftharpoons 4OH^-$	0.401
$O_3 + 2H^+ + 2e \rightleftharpoons O_2 + H_2O$	2.075
$Pb^{2+} + 2e \rightleftharpoons Pb$	-0.1251
$Pb^{2+} + 2e \rightleftharpoons Pb(Hg)$	-0.1205
$PbO_2 + 4H^+ + 2e \rightleftharpoons Pb^{2+} + 2H_2O$	1.468
$PbO_2 + SO_4^{2-} + 4H^+ + 2e \rightleftharpoons PbSO_4 + 2H_2O$	1.698
$PbSO_4 + 2e \rightleftharpoons Pb + SO_4^{2-}$	-0.3505
$Pd^{2+} + 2e \rightleftharpoons Pd$	0.915
$Pt^{2+} + 2e \rightleftharpoons Pt$	1.188
$PtCl_4^{2-} + 2e \rightleftharpoons Pt + 4Cl^{-}$	0.758
$PtCl_{4}^{2-} + 2e \rightleftharpoons PtCl_{4}^{2-} + 2Cl^{-}$	0.726
$\operatorname{Ru}(\operatorname{NH}_3)_{\delta}^{3+} + e \rightleftharpoons \operatorname{Ru}(\operatorname{NH}_3)_{\delta}^{2+}$	0.10
$S + 2e \rightleftharpoons S^{2-}$	0.447
$\operatorname{Sn}^{2+} + 2e \rightleftharpoons \operatorname{Sn}$	-0.1375
$\operatorname{Sn}^{4+} + 2e \rightleftharpoons \operatorname{Sn}^{2+}$	0.15
T1 ⁺ + 2 == T1	-0.3363

NATIONAL ENERGY TECHNOLOGY LABORATORY

Bigger is Better!

- Catalyst, Reactor, & Electrode Scaled by Over 100 X in 3 months
- CO yields of ~15,000 L g⁻¹ h⁻¹

Electrode Optimization

- Lower reaction rates at high catalyst loading ... Eliminate "catalyst crowding"
- H₂ evolution from catalyst support at extremely low catalyst loading

★ Must optimize catalyst loading for high product formation rates and good selectivity

NATIONAL ENERGY TECHNOLOGY LARORATORY

NETL 13

Initial Long-Term Testing

Connected to potentiostat and tested over two days at -1V

\star 1.1 kg CO₂ converted per gram catalyst per hour **\star**

<u>Carbon Negative</u> CO₂ mitigation technology

Cheap Consumer/Hobby Grade Solar Panel Runs Au₂₅ E-chem Reactor

 CO_2 in

NATIONAL ENERGY TECHNOLOGY LARORATORY

(Solar) rechargeable batteries can also power reactor during night time hours or cloudy days

Summary

- Au₂₅ is one of the most efficient CO₂ catalysts ever reported
- Charged clusters (Au₂₅⁻, Au₂₅⁰, Au₂₅⁺) have been isolated & shown to enhance catalytic activity
- Scalable electrochemical reactor with Au₂₅ has been developed
- <u>Carbon negative</u> E-chem reactor demonstrated to run off cheap consumer/hobby grade solar panels & small solar-charged batteries

Appendix

Publications

- 1. D. Kauffman, D. Alfonso, C. Matranga, P. Ohodnicki, X. Deng, ab R. Siva, C. Zeng and R. Jin, "Probing active site chemistry with differently charged Au₂₅^q nanoclusters (q = -1, 0, +1)", Chemical Science, Vol. 5, 3151-3157, (2014).
- 2. J. Lekse, B. Haycock, J. Lewis, D. Kauffman, C. Matranga, "The effect of electronic structure changes in NaInO₂ and NaIn_{0.9}Fe_{0.1}O₂ on the photoreduction of methylene blue", Journal of Materials Chemistry A, Vol. 2, pgs 9331-9337 (2014).
- 3. Haycock, B.J., Underwood, M.K., Lekse, J.W., Matranga, C., and Lewis, J.P., "High-Throughput Approach to Calculate Properties of CuGa1-xFexO₂ Delafossite Oxides," *Journal of Computational Physics*, Volume: 86 Pages:155-164, 2014.
- 4. (Invited Paper): Natesakhawat, S., Ohodnicki, P.R., Howard, B.H., Lekse, J.W., Baltrus, J.P., and Matranga, C., "Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide," Topics in Catalysis, 2013, 56, 1752–1763, online DOI: 10.1007/s11244-013-0111-5.
- 5. Sorescu, D.C., Civiš, S., and Jordan, K.D., "Mechanism of Oxygen Exchange Between CO₂ and TiO₂(101) Anatase," *The Journal of Physical Chemistry C*, Volume: 118 Issue: 3 Pages: 1628-1639 DOI: 10.1021/jp410420e.
- 6. Tafen, D.N., Long, R., and Prezhdo, O., "Dimensionality of Nanoscale TiO₂ Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle," *Nano Letters*, Volume: 14 Issue: 4 Pages: 1790-1796.

Patents

- 1. "Method of Conducting a Thermally Driven Reaction Using Plasmonic Heating" C. Matranga, C. Wang, P. Ohodnicki, Nonprovisional patent filing S-134,097, April 2014.
- 2. "Controlling Au₂₅ Charge State for Improved Catalytic Activity" D. Kauffman, C. Matranga, D. Alfonso, P. Ohodnicki, R. Jin, X. Deng, R. Siva, C. Zeng, Nonprovisional patent filing, (with DOE Chicago Field Office for Fiing)
- 3. "Efficient Electrocatalytic Conversion of CO2 into CO using Ligand-Protected Au25". D. Kauffman, C. Matranga, D. Alfonso, P. Ohodnicki, R. Jin U.S. Non-Provisional Patent Application Number S-131,026, Oct 2013.

Presentations

- 1. "Gold-based Nanomaterials for Catalytic CO₂ Conversion Applications", Christopher Matranga, University of Pittsburgh and PPG Innovations in Materials Chemistry Symposium, Pittsburgh, May 2014.
- 2. "Nanocatalyst Systems for Fossil Energy Applications", Christopher Matranga, Council for Chemical Research Symposium on The Role of Nanotechnology in a Sustainable Future, Pittsburgh, October 2013.
- Kauffman, D.R., Alfonso, D., Matranga, C., Deng, X., Ohodnicki, P., Siva, R.C., and Jin, R., "Using Charged Au₂₅q Nanoclusters (q = -1, 0, +1) to Probe the Active Site Chemistry of Supported Gold Catalysts," abstract accepted for presentation at the 225th Meeting of the Electrochemical Society (ECS), Orlando, FL, May 11–15, 2014.
- Kauffman, D.R., Alfonso, D., Matranga, C., Ohodnicki, P., Siva, R.C., and Jin, R., "Atomically Precise Au₂₅ Nanoclusters for Efficient Electrochemical CO₂ Conversion," abstract accepted for presentation at the 225th Meeting of the Electrochemical Society (ECS), Orlando, FL, May 11–15, 2014.

,#、

Reversible Optical Bleaching in Presence of CO₂

Kauffman, et, al. J. Am. Chem. Soc. 2012, 134, 10237–10243.

NATIONAL ENERGY TECHNOLOGY LABORATORY

CO₂ Physisorption Reversibly Perturbs Electronic Structure

Optical Bleaching Results from Reversible Charge Redistribution

NATIONAL ENERGY TECHNOLOGY LABORATORY

<u>Carbon Negative</u> CO₂ mitigation technology

CO₂ in

NATIONAL ENERGY TECHNOLOGY LARORATORY

(Solar) rechargeable batteries can also power reactor during night time hours or cloudy days

