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@ Project Objectives -

The overall goal of the project is to discover the short-term fluid

and rock interaction processes occurring during CO, injection in
geological reservoirs.

e Determine the mineralogical and chemical changes in the fluid and
rock, and how these interactions affect porosity and permeability in
different rocks.

e Assess the role of reservoir mineralogy and petrography in
controlling geochemical processes during CO, injection.

 Investigate the types and rates of supercritical CO, - 2% NaCl brine
rock reactions.

e Mechanistic modeling of reactivations of natural fractures near
Injection wellbore due to CO, injection



The University of Utah

Batch Reactors
Oven 60°C Batch reactor system
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Batch reactor system conditions

= Reaction pressure: 2,400 psi

=  Reaction temperature: 60 T

=  Reaction time: 14 days

=  Core samples: Sandstone, Limestone, and Dolomite
= (Powder, fractures, and 0.5 inch core plug)
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Core Flooding
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Core flooding system conditions

= Core pressure: 2,000 psi

=  Confining pressure: 3,000 psi

= Reaction temperature: 60 °C

= Reaction time : 3-14 days

=  Cores: Sandstone, Limestone, and Dolomite
= CO, : Brine ratio: Variable

= (1.5 inch diameter, 7 inch length)




@Analysis Methods

BET, He porosimeter,
and Micro-CT

Analyze porosity changes

surface area and pore structure
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Measure pH and cation
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XRD and QEMSCAN

Mineralogical analysis

of core samples

Batch Reactor System

Core Flooding System
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@X-ray Micro CT

X-Ray Microtomography System
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Sandstone

; Before reaction After reaction
Limestone

Dolomite Before reaction After reaction

Figure 3. The images of each core plug sample using Micro-CT before and after non-flowing batch
reaction 2% NaCl and supercritical CO, experiments.
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@ Results - Batch
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Results - Batch

able 1. ICP-MS results for unreacted and reacted core samples'

Ca Fe
(mg/kg) (mg/kg)
Unreacted core plug samples
LoD 399 7
Sandstone 1703 4655
Limestone 497661 2057
Dolomite 283987 2168
Reacted core plug samples
LoD 13 0.04
Blank <13 73.92
Sandstone 154 192.1
Limestone 571 0.08
Dolomite 302 0.08

Table 2. Summary of BET results for the core samples of different rock types

Surface area
Core plug samples (m2/g)

Before After Variation

Sandstone 0.8926 1.1095 24.3%
Limestone 0.3235 0.3558 9.98%
Dolomite 0.0023 0.0026 13.04%
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@Results — Core Flood

ICP-MS results of Sandstone solution samples after core flooding (2% NaCl, supercritical COZ) by time.
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Entire 7 inch Sandstone core pre- and post- experiment was analyzed by He porosimeter.

Unreacted Brine: 1 ml/min Brine: 1 ml/min Brine: 1 ml/min
Sandstone CO,: None CO,: 1.41 ml/min CO,: 2.82 ml/min
21.263_ % 21.738_ % 22.408_ %
AN AN
Average / /
porosity ' ' L '
of Sandstone 21.175% 20.777 % Vs 22.148%
21.234 %
21.706 % / g 21.822 % / 21.650 %
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Flooding Experiment - 2% NaCl brine, supercritical CO, X-ray Micro CT
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O We have systematically investigated changes of mineralogy and porosity
using XRD, ICP-MS, and Micro-CT. All of these characterizations reveal
that consistent changes occur within the properties of rocks in batch
reaction during exposure to non-flowing 2% NaCl brine and supercritical
CO.,.

O The limestone sample in the core flooding experiment has proven to be
much more reactive than the sandstone sample at these conditions. This
Isclearly demonstrated by the wormhole seen in the Micro-CT images.

 The reactive changes are stimulated by CO, injection, and are expected t
olead to mechanical property changes of the rocks.
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Mechanistic modeling o ural fractures

near injection wellbore due to CO2 injection

150

w100

50

Cemented wellbore with open injection interval
Vertical stress ~10,000psi with H/V ratio of 0.5
Densely fractured reservoir

Natural fractures are assumed to be
mechanically closed

Natural fractures have initial permeability of
~1.4x10?m?

The reservoir matrix permeability is extremely

low,~ 1.4x1019m?
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Method: Coupling DEM with Conjugate Network Flow Model

Prior to fracturing

After fracturing
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 Directly calculate apertures of micro-fractures;

» Apertures are used to as direct input for updating permeability
of the flow network

» More PHYSICS-based hydraulic fracturing model



Simulations on stress and permeability changes
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Horizontal stress field during steady flow injection
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Next step

DEM geomechanics model provide to be robust for either
fractured or unfractured reservoirs

Most natural fractures are filled with secondary minerals, and
have certain tensile and shear strengths: DEM model must
account for such effects in dealing with natural fractures

Geochemical reactions such as mineral dissolution/precipitation
weaken or increase mechanical strength in natural fractures,
leading to reactivation of fractures or fracture plugging

The reasonable approach is coupled DEM-network flow-reactive
transport models for hydro-mechanical-chemical processes in
fractured reservoir
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