

Quadrennial Technology Review 2015

Briefing Background

2014 Carbon Storage Program Review Meeting

Mark Ackiewicz
Office of Fossil Energy

Origins of the Quadrennial Technology Review

 The President's Council of Advisors on Science and Technology identified in 2010 a need for a government-wide Federal energy policy—the Quadrennial Energy Review (QER), with a review of DOE's work on technology —the Quadrennial Technology Review (QTR)—as one component.

The first QTR was published in 2011.

- The President called for an interagency QER in January 2014.
- Secretary Moniz requested a new QTR in parallel with the QER.
- The QTR is focused on DOE R&D, whereas the QER is focused on infrastructure and on government-wide energy policy this year. The QTR and QER are being done in parallel and are complementary.

Changes in the Energy Landscape Since QTR-2011

- New urgency in addressing our energy challenges, particularly carbon emissions.
- The need for resiliency and robustness to extreme weather and other events.
- Dramatic changes in unconventional fossil fuel production, with impacts on other energy supply and end-use sectors.
- Rapid cost reductions and market penetration for renewables.
- New opportunities for nuclear power, but shadows from Fukushima.
- Rapid changes in the electricity sector now beginning.
- Advances in electrification of transportation.
- Improvements in Buildings and Industry efficiency.
- New emphasis on manufacturing and competitiveness.
- Fading distinction between electricity suppliers and customers.
- Initial large-scale, integrated CCS demonstration plants beginning to come on line.

The Quadrennial Technology Review 2015

 Goal: Frame the R&D implications of the energy-linked challenges that we face and the scale, scope, and time frame for response.

Contents:

- Assessments to identify/evaluate the most important technology R&D opportunities over the next 5-10 years.
- Uses systems frameworks to evaluate the power, buildings, industry, and transportation sectors.
- Examines enabling science of DOE's portfolio out to 2030.
- Examines manufacturing issues in depth.
- Will strategically engage:
 - Department of Energy and National Lab Scientists and Engineers;
 - Industry, Academia, and other Experts;
 - Stakeholders.
- Will inform DOE's R&D agenda and budgets, and drive the rebalancing and reinvigoration of the R&D Portfolio.
- Provide the common vision for the R&D path forward.

Notional QTR Draft Chapters

Executive Summary

- Energy Challenges
- What has changed since QTR 2011
- Energy Systems and Strategies
- Advancing Systems and Technologies to Produce Cleaner Fuels
- Enabling Modernization of Electric Power Systems
- Advancing Clean Electric Power Technologies
- Increasing Efficiency of Buildings Systems and Technologies
- Increasing Efficiency and Effectiveness of Industry and Manufacturing
- Advancing Clean Transportation and Vehicle Systems and Technologies
- Enabling Capabilities for Science and Energy
- Emerging Markets and U.S. Competitiveness
- Accelerating Science and Energy RDD&D and Technology Transfer
- Action Agenda and Conclusions

Possible Energy Supplies and Technologies R&D

Advancing Systems/Technologies for Cleaner Fuels: R&D Opportunities

- Subsurface Engineering R&D
- Unconventional Oil & Gas: shale development; spill prevention; methane hydrates; natural gas transportation, storage, distribution
- Biofuels; Bioproducts
- Hydrogen
- Direct Renewable Energy Fuels
- Water-Energy in Fuels Production
- Enabling Science

<u>Enabling Modernization of Electric Power</u> <u>Systems: R&D Opportunities</u>

- Grid Architectures and Concepts
- Grid Communications, Control,Operations
- Transmission & Distribution Components
- Grid Cyber and Physical Security
- Integration of Demand-Side Resources and Grid Interfaces
- Energy Storage Integration
- Enabling Science

Advancing Clean Electric Power Technologies: R&D Opportunities

- Carbon Management
- Nuclear Power–SMRs, Fast, Hybrids
- BioPower-CCS
- Concentrating Solar Power
- Supercritical CO2
- CHP/Fuel Cells Distributed Gen.
- Geothermal Power
- Solar Photovoltaic Power
- Water/MHK Power
- Wind Power
- Power Electronics
- Distributed Systems
- Energy Storage Components
- Hybrid Systems
- Energy-Water Technologies

Energy System Integration is a key emphasis.

Possible Elements of the Technology Assessments

Key R&D Opportunities and Impacts on Technology cost.

FE QTR Section

- CCS will be covered in QTR Chapter: Advancing Clean Electric Power Technologies, and in the Section titled: "Advanced Fossil-Fueled Plants with Carbon Capture and Storage".
- Section covers CCS and non-CCS technology improvements related to efficiency and/or capital cost.
- A strong effort will be made to keep the QTR report length manageable. This could significantly reduce technology detail.
- Links to other documents will provide access to greater detail.

Current Draft CCS Section Outline

Advanced Fossil-Fueled Plants with Carbon Capture and Storage

Overview

Program Goals and Performance Targets

Program Logic

Driving Down CCS Cost through Improved CO₂ Capture and Power Plant Efficiency

- PC-Based Power Plants with CCS
- Gasification-Based Power Plants with CCS
- CCS for Existing Coal and Natural Gas Power Plants, and Industrial Facilities
- Supporting Research (e.g. CCSI)

Demonstrating the Safety and Permanence of CO₂ Storage

- Core R&D
- Storage Infrastructure Regional Partnerships

Large-Scale Integrated CCS Projects

Driving Down CCS Cost through CO₂ Utilization and other Value Added Products

Reduce RD&D Cost and Accelerate Deployment Through International Partnerships

Regulations and Supporting Policies

Questions/Comments

- We welcome your questions and comments
- Public review documents may not be available until early 2015
- Final report expected by middle of 2015
- Notice to review the draft will be sent to the storage meeting's email list because it is especially important to hear back from knowledgeable groups.
- The public review will seek input on a variety of questions such as:
 - What are the big R&D opportunities? What is missing from the current QTR list?
 - What are the potential synergies across R&D activities?
 - What should the overall and specific balance be across the portfolio?
 - What are the potential impacts of the particular R&D efforts on our economic, environmental, and security challenges? What are appropriate metrics?
 - What policy issues are driven by the technology being developed?
 - What are the most effective means for technology transfer?
 - What R&D management mechanisms have been most successful in the private sector and should be considered in the public sector?
- If you want to communicate with the QTR team prior to the public review process, emails can be sent to FEQTR2014@hq.doe.gov