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Presentation Outline
• Project goals and benefits; 

• Detailed project objectives & success criteria; 

• Accomplishments to date; 

• Summary of results; 

• Appendix (organization chart; Gantt chart; supplemental 
results). 
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Benefit to the Program 
Major goals:
Support industry’s ability to predict CO2 storage capacity in 
geologic formations to within ±30% accuracy; 

Develop and validate technologies to ensure 99% storage 
permanence.

Project benefits:
Facilitate the development and implementation of efficient 
workflows for modeling field-scale GCS in a variety of 
geochemically reactive environments, where formations 
exhibit multiple scales of permeability (k) heterogeneity.
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Project Overview:  
Goals and Objectives

• Develop, test, and verify the DoE and RS uncertainty analysis for a fully 
heterogeneous reference model (FHM) & increasingly lower resolution 
“geologic models” created from upscaling the FHM. 

• Investigate the effect of increasing reservoir k variance and depth on the 
uncertainty outcomes including optimal heterogeneity resolution(s). At 
greater injection depths, investigate gravity-stable injection.

• Investigate the effect of mineral reactions on GCS, including mineral 
volume fractions, reactive rate constants, reactive surface areas, and the 
impact of different geochemical databases. 
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Project Overview:  
Success Criteria

• At increasing depth, for both weakly and strongly heterogeneous systems, 
the geologic models can capture the FHM CO2 behaviors within the full 
parameter space;  Reduced characterization cost;

• RS analytical models are successfully verified against full-physics reservoir 
simulations via HPC, thus prediction uncertainty of any outcome at any time 
can be assessed using the low-resolution model(s) running the efficient RS 
models.  Enhanced computation efficiency;

• Mineral storage analysis: seeking the most efficient composition for reactive 
storage  Enhanced storage;

• Greater injection depth: within the uncertainty analysis framework, identify 
the combination(s) of favorable parameters & reservoir condition that give 
rise to gravity-stable flow.  Enhanced storage security.

5



Accomplishments to Date
• High-resolution reservoir k heterogeneity (3.2 M grid cells) 

& geologic models of decreasing k resolutions;

• Permeability upscaling & single-phase flow verification;

• CO2 modeling with PFLOTRAN & performance scaling on 
the petascale Yellowstone supercomputer at NWSC;

• Model comparison & DoE/RS analysis;

• CO2 modeling considering mineral reactions.
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Sediment Experiment at SAFL 

http://www.safl.umn.edu/
Project Leader: Prof. Chris Paola
Founding: NSF & oil industry consortium 7

http://www.safl.umn.edu/


Reservoir Heterogeneity Vs 
Geologic Models

FHM 8-unit facies model 3-unit facies model

A 1-unit homogeneous “formation” model is also created (not shown); 
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Upscaling Verification 
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Carbon Sequestration Modeling 
with Reactions

• Multicomponent-multiphase non-isothermal reactive flow and 
transport model;

• Massively parallel---based on the PETSc parallel framework;
Peta-scale performance
Highly scalable (run on over 265k cores)

• Supercritical CO2-H2O;
Span-Wagner EOS for CO2 density & fugacity coefficient
Mixture density for dissolved CO2 in brine (Duan et al., 2008)
Viscosity of CO2 (Fenghour et al., 1998)

• Finite Volume Discretization;
Variable switching for changes in fluid phase
Structured/Unstructured grids

• Reactive transport modeling, including CO2-mineral reactions with 
many degrees of freedom
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PFLOTRAN Scaling on Yellowstone 
Yellowstone is a 1.5-
petaflops 
supercomputer with 
72,288 processor cores 
& 144.6 TB of memory. 
http://www2.cisl.ucar.e
du/resources/yellowsto
ne

1-unit model (3.2M):
* 20 yr CO2 injection 
+ 2000 yr monitoring
* 2048 cores: 9 
hours

1-unit model (25 M): CO2 injection w/ reactive chemistry
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Dissolved CO2

• Under both low and high variance conditions, the 1-unit model can reasonably capture the plume 
footprint of the FHM.

• Base on results of the upscaling study, the 8-unit and 3-unit models (simulations are ongoing) should 
yield more accurate dissolved CO2 predictions than the 1-unit model.

Time = 2K years (inj rate= 1kg/s; injection time = 20 years): 
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Design of Experiment (1-unit) 
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Parameter Ranking (1-unit) 
Outcome: dissolved CO2 at End of Monitoring 
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Mineral List
Mineral Formula Init VF (%)
Quartz SiO2 43.04213
Calcite CaCO3 4.21872
K-Feldspar KAlSi3O8 15.77216
Kaolinite Al2Si2O5(OH)4 0
Albite NaAlSi3O8 0
Plagioclase (Na0.75,Ca0.25)(Al1.25,Si2.75)O8 4.06691
Illite K0.6(Mg0.25, Al1.8)(Al0.5, Si3.5)O10(OH)2 4.01098
Hematite Fe2O3 1.598
Dawsonite NaAlCO3(OH)2 0
Chlorite (Mg2.5, Fe2.5, Al)(Al, Si3)O10(OH)8 7.191
Siderite FeCO3 0
Ankerite Ca(Mg1.3, Fe0.7)(CO3)2 0
Magnesite MgCO3 0
Na-Smectite Na0.290(Mg0.26, Al1.74)(Al0.03, Si3.97)O10(OH)2 0
Ca-Smectite Ca0.145(Mg0.26, Al1.74)(Al0.03, Si3.97)O10(OH)2 0
Dolomite (CaMg)(CO3)2 0
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CO2 Simulation: Mineral Trapping
• Chlorite can provide cations such as Mg2+ and Fe2+, 

which are essential chemical components for 
forming carbonate precipitates.

• The reactions between cations and CO2 forms 
carbonate minerals (e.g., siderite, magnesite and 
ankerite) to trap CO2 as precipitates. 
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Changes in Volume Fraction: 
Chlorite after 2000 years
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Changes Volume Fraction: 
Siderite after 2000 years  
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Changes Volume Fraction: 
Magnesite after 2000 years
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Changes Volume Fraction: 
without Chlorite after 2000 years

20



Summary
• Global upscaling computes equivalent ks for the geologic models with decreasing k 

resolution; for increasing reservoir ln(k) variances (0.1, 1.0, 4.5), FHM pressure and flow 
rate are captured well by the geologic models, but errors increase with variance.

• When the variance of ln(k) is low, the 1-unit model yields similar dissolution fingering as 
the FHM. When the variance of ln(k) is high, the 1-unit predicts more dissolution fingering 
per unit time (more optimistic dissolution storage estimate).

• Experimental design analysis suggests that brine salinity is the single most influential 
factor impacting CO2 dissolution storage. 

• Reactions between cations and CO2 forms carbonate mineral precipitates (i.e., Siderite 
and Magnesite), leading to mineral storage. But, high degree of uncertainty exists in its 
prediction. 

• Next step: For low and high variance systems, complete the DoE and RS analysis for all 
models with reactions to compare their parameter sensitivity & prediction uncertainty.
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Appendix
– These slides will not be discussed during the 

presentation, but are mandatory
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Organization Chart
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23



Gantt Chart
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FHM v. 1-Unit Model: σ2
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An example 1-Unit model run for CO2 storage modeling simulated on the Yellowstone 
supercomputer. The problem domain is 7000 m x 7000 m x 250 m. Shown at 100 years for an 
isosurface of 0.0125 (mole fraction) of dissolved CO2. CO2 is injected at a depth of 50 m below 
the top at the center of the xy-domain for 20 years. The grid is 160 x 160 x 25 =0.64 million cells. 
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FHM v. 1-Unit Model: σ2
lnk=4.5
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PFLOTRAN Scaling on Yellowstone 
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