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MRCSP Presentation Outline

• Program Overview 
• Technical Discussion
 Injection operations 
 Site characterization
 Baseline monitoring
 Reservoir pressure analysis
 Static modeling
 Dynamic modeling
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MRCSP: 10 Years of Achievements... 
and Going Strong
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Contributions From Partners Have Helped 
Make MRCSP Successful
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MRCSP Region - Economic Drivers
•Population: 80.4 million (26% of the U.S. population) 
•Gross Regional Product: $3.1 trillion (27% of the U.S. economy) 
•26.3% of all electricity generated in the US 
•75% of electricity generated in the region is generated by coal 

MI
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MRCSP Field Test Sites
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Regional Characterization Critical for 
Developing Implementation Plans

Nine State Geo Teams 
assist in identifying and 
characterizing reservoirs 
across state lines 

Piggyback wireline logging, coring, etc. fills gaps in 
knowledge base, and stretches research funds

Ohio Coal Development Office strong supporter of 
geological characterization efforts through cofunding of 
activities.
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Large Scale 
Demonstration Site

Location:  Otsego County, Michigan

Source of CO2:  
Local Natural Gas Processing Plant 
(Antrim Shale Gas ~15% CO2 content)

Reservoir Type: 
Closely-spaced, highly compartmentalized 
oil & gas fields located in the Northern 
Michigan’s Niagaran Reef Trend
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Outreach and Education Critical to 
Success of the Program

Proactive Approach
- Communication Plan
- Annual Partner’s Meetings
- Site Visits 
- Community Relations
- Outreach Materials
- Website
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- DOE/NETL Best Practices Manuals
- NATCARB Database and Publications
- EPA Guidelines Requests for Comments
- Industry Mtgs & Conferences
- Trade Associations
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EOR Field Evaluation Across Life 
Cycle Stages

Oil fields in various production stages

• Late-Stage EOR Reefs (Task 3)
Highly depleted with extensive primary 
and secondary oil recovery.

• Active EOR Reefs (Task 4)
Completed primary oil recovery and 
secondary oil recovery is under way

• Pre-EOR Reefs (Task 5)
Undergone primary oil recovery but no 
secondary oil recovery is attempted

Reef 
Surface
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Summary of Progress

• Completed baseline monitoring and site preparation
• ~240,000 metric tonnes injected in late state reef
• >25,000 metric tonnes net CO2 in active EOR reefs
• Operational and subsurface monitoring underway
• Reservoir analysis shows closed reservoir conditions
• Phase chance and compressibility affect pressure
• Initial static and reservoir models prepared
• Injection in new EOR reefs likely to start in early 2015
• Regional mapping/characterization across nine states
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Many Operational and geological factors 
affect CO2 injection and storage in EOR Fields

• Production history for each reef needs to be known, including:
 Original estimates of fluids (oil, gas, brine) 

 Primary production history

 Secondary recovery, CO2 injection and retention

• Current operational constraints determine how much CO2 is stored within 
each reef at a given time

• Geologic factors such as:
 Size of the reservoir

 Configuration of the wells

 Relative permeability

 Solubility of CO2 in brine and oil

 Reservoir temperature and pressure
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Core Energy’s EOR Infrastructure used 
for Testing CO2 Storage

Core Energy 
Compressor

Core Energy 
Existing Pipeline

Charlton 6

Charlton 30/31

Dover 33
Dover 35

Chester 5

Dover 36 

Chester 2

Dover 33 is the 
main test bed

Active reefs also 
being monitored

Natural gas processing 
provides the CO2

Pre-EOR reef TBD

13



CO2 Flow System

Fluid production

Fluid Injection

Pure CO2
compressed at 
Chester 10

Produced and 
Recycled CO2

Compositional Analysis

All produced CO2 is recycled back into system.
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Injected CO2 (includes pure CO2 from 
Chester 10 + produced/recycled CO2)
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Dover 33 Reef EOR Operations
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Dover 33 Reef Wells
• 3 active wells

• Well 1-33 (vertical well) is 
the CO2 Injection well.

• Well 2-33 (horizontal well) 
is a former production well 
that was used as a 
monitoring well. This well 
is an open borehole.

• Well 5-33 (high angle well) 
is a former production well 
that was used as a 
monitoring well. 

1-33 injection well

5-33

2-33

1-33

18



Dover 33 Reef Showing Well Traces

Injection  Well (1-33)
Surface of A-1 
Carbonate 
Showing Reef 
Structure 
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A portfolio of technologies is being 
tested at the Dover 33 late stage reef

Lessons learned will be applied to design the MVA plan for the newly targeted field 

Activity Before
Injection

Early 
Injection

Mid 
Injection

Late 
Injection

After 
Injection

CO2 flow X X X
Pressure and 
temperature X X X X X

Wireline logging X X X
Borehole gravity X X
Fluid sampling X X X
VSP X X
Microseismic X Maybe
Satellite radar X X X X X
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Baseline monitoring activities
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Safety Considerations for MRCSP 
Fieldwork

• Wide variety of work -- wide range of safety considerations

• All work completed safely to date!
Well Workovers –
well control, 
overhead hazards, 
heavy equipment

Seismic Activities –
well work, explosive 
hazards

Fluid Sampling and 
Reservoir Testing –
high pressure fluids, 
well work

InSar ACRs – heavy 
equipment operation

Wireline Logging –
well work, radiologic 
hazards
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Vertical Seismic Profile
• Five walk-away lines centered around 1-33 injection well

• Processed data shows increase in resolution, though questions 
remain regarding potential migration errors

• VSP will be repeated after injection is completed

Receiver Locations North-South Line
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Comparison of Surface and Borehole 
Seismic Data

• The two images show nearly the same geologic slice

• The VSP shows higher resolution and more internal reef character

• Curvature seen on the edges of the image is a processing artifact

• 3D Data • VSP
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East-West VSP Line Detail

A2 Carbonate

A1 Carbonate
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Microseismic Monitoring
• Monitoring in Dover 33 well 5-33 from 3/20/13 - 4/1/13, during 

and after a short injection test

• Data quality was good  for confidence in event picks

• 34 events recorded, but none in the reef
 Detectable events verify the ability of the array to detect events

 Events were located using a velocity model created from the available sonic 
logs in and around the reef

• Maybe repeated after injection

27



Microseismic Event Locations

Simplified Reef 
Location

Borehole Events

Small Seismic 
Events
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Pulsed Neutron Capture

• Completed baseline and repeat logs in 
two wells (2-33 and 5-33)

• Processing to distinguish liquid 
(oil/brine) from gas (CO2/methane) 
phase

• Additional processing may distinguish 
between oil and brine

• Initial results show increase in fluid 
phase constituents and a decrease in 
gas phase constituents – CH4
dissolving in oil and CO2 phase change 
to supercritical?

• Further logging events may also help 
distinguish phase behavior from fluid 
saturations

Well 5-33 repeated data, showing 
data from 2012 to 2013

LithologyGas/Fluid 
Saturation

Porosity Percent change 
in Sigma
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• Gravity meter takes point 
measurements along the 
injection wellbore

• Data is then converted to 
density

• Repeat surveys indirectly 
measure the change in 
CO2 saturation

Borehole gravity surveys conducted to 
measure CO2 saturation
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Geochemical sampling and analysis

31

• Major and trace element in fluids
• Isotopic composition of gas, 

water, carbon compounds
• Seeking regional core samples 

to analyze mineralogy, porosity, 
pore networks

• Integrating results into predictive 
models to better understand 
geochemical processes

• In collaboration with Ohio State
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High precision measurements of the ground 
surface using satellite radar (InSAR)

• Installed reference 
points (ACRs)

• Completed historic 
analysis and >one year 
of operational 
monitoring

• No significant elevation 
change detected so far 

Source: TRE Canada, Inc.
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16 week
Test

11 week
Test

30 week 
Test

9 Day
Test

1 Day
Test

*Pressure in 1-33 injection well available only thru 12-26-13

CO2 Injection and Pressure Response
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History Matching Method Was Used for 
Analyzing Injection-Fall-Off Tests

• History matching was 
implemented using analytical 
reservoir model (WellTest™)

• History matching process:

• Using measured injection 
record for each CO2 injection 
test, simulate pressure 
response in the injection well 
and monitoring wells; 

• Adjust model parameters to 
match the measured 
pressure response during 
the injection-falloff sequence

Simulated pressure

Measured pressure
Pr

es
su

re
 (p

si
)

Elapsed Time (hr)

Example History Match Plot for 
a Single Injection Fall-Off Event

---------- Injection ------------ ----Fall-Off ---

Modeled

Measured
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9-Day Injection+3-Week Fall-Off Test
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Injection Well
Pressure Match

Injection Well
Derivative Match

Monitoring Well 5-33 Monitoring Well 2-33

16-Week Test

Could not match Could not match

16-Week Injection + 3-Week Fall-Off Test
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16-Week Injection + 3-Week Fall-Off Test (2-33)
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Results

Mobility (2-33 and 5-33)Mobility (1-33)
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CO2 Phase Behavior During Tests 
Based on P&T at Injection Well

|--1 day--|---9 day test--|----------------11 week test-------------------|--------------------16 week test-------------------------------------|

V

L
S

Vapor
Liquid
Supercritical

V

L SL

V
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CO2 Compressibility During Tests 
Based on P&T at Injection Well

|--1 day--|---9 day test--|----------------11 week test-------------------|--------------------16 week test----------------------------------|



Summary of Fall-Off Testing (cont’d)

• It was not possible to match all injection/fall-off events
• Despite limitations of analytical modeling approach, the 

following conclusions can be made:
 The Dover 33 reef behaves as a closed system, as evidenced by 

pressure build up over time

 It can be modeled as a circular reservoir with radius of ~1,000 to 
2,000 ft (most scenarios suggested radius <1,500 ft)

 Permeability ranges from ~ 1 to 42 md based on injection well 
results and ~ 2 to 23 md based on monitoring well results

• EPA Class VI UIC Regulation requires periodic Fall-Off 
Testing; existing analytical methods may not be adequate 
for EOR reservoirs.
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Field data has been integrated into 
geologic models of the reef

Log and core correlation
Seismic Interpretation Geologic Framework Model

Final Geologic Model

Porosity
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Sensitivity of dynamic reservoir 
behavior to alternate geologic models

Static Earth Model 
(SEM) Level 1

Property distributions 
constrained by geologic 
formation surfaces.

Property distributions 
constrained by 
lithofacies.

Static Earth Model 
(SEM) Level 2

Geologic surfaces based on 3D seismic and well data.
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Dover-33 (carbonate reef) represented in 
various levels of geologic detail

SEM1 Porosity Model

SEM2 Porosity Model
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Initialization of SEM1 in black oil 
simulator
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Goals of Reservoir Modeling

• Scientific – process understanding (e.g., how does CO2
move through the formation and interact with oil/brine)

• Engineering – system design (e.g., well rates/location 
needed to maximize recovery and optimize storage)

• Calibration – history matching (e.g., update description of 
subsurface by comparing model predictions to observations)

• Regulatory – compliance demonstration (e.g., what is the 
risk of CO2 leakage)

• Outreach – visualization (e.g., animation of system evolution)
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Phase-III Modeling Tasks

• Task 1.11 – Assessment and Modeling of Niagaran Reefs 
 CO2 storage potential in Niagaran reef trend

• Task 3.4 – Reservoir Modeling & Analysis (Late Stage Reefs)
 Prediction/history matching of CO2 injection response

• Task 4.3 – Reservoir Modeling & Analysis (Active Reefs)
 Prediction/history matching of CO2 injection response

• Task 5.4 – Reservoir Modeling & Analysis (New Reefs)
 Design of optimal CO2 injection scenarios

 Prediction/history matching of CO2 injection response
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Black-oil Model History Match    
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“Validation” with Phase III Injection Data
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Ongoing/Future Modeling Activities

• Complete compositional model history match for 
secondary recovery period

• Predict injection pressure response for Phase III injection, 
and adjust model parameters as needed to match field data

• Repeat exercise for Level 2 SEM (lithofacies model)

• Extract single-well simulation model for detailed analysis 
of transient pressure response from injection-falloff periods.

• Incorporate geochemical and geo/mechanical aspects

• Investigate applicability of material balance type models
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Material Balance with CO2 Injection
Fluids produced CO2 injected
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Injection Response in a Closed Volume

• If ct is known, we can predict 
pressure buildup from injection 
of known volume (or storage 
capacity upto discovery pressure)

• co ~10-5 psi-1; cw, cf ~10-6 psi-1

• cg ~10-4 psi-1 (pressure. dependent)

• [Q] Can we obtain insights on ct

versus p relation from field data?
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What Can We Learn From Modeling?

• Workflow for building SEMs with limited data, and 
calibrating dynamic models to production history

• Impact of geologic uncertainty on reservoir behavior

• Factors affecting CO2 retention in closed systems

• Simplified models for predicting CO2 storage capacity 
in depleted reef reservoirs 

• Significance of coupled processes in depleted reefs
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Questions?

Please visit www.mrcsp.org
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