Darrell Paul, Program Mgr Neeraj Gupta, Technical Mgr Srikanta Mishra, Modeling

MRCSP MIDWEST REGIONAL CARBON SEQUESTRATION P A R T N E R S H I P

Midwest Regional Carbon Sequestration Partnership

Carbon Storage R&D Review Meeting, Pittsburgh, PA August 12-14, 2014

DOE/NETL Cooperative Agreement # DE-FC26-0NT42589

MRCSP Presentation Outline

- Program Overview
- Technical Discussion
 - Injection operations
 - Site characterization
 - Baseline monitoring
 - Reservoir pressure analysis
 - Static modeling
 - Dynamic modeling

MRCSP: 10 Years of Achievements... and Going Strong

Contributions From Partners Have Helped Make MRCSP Successful

Phase III EOR Fields Core Energy

Michigan Basin DTE Energy

Cincinnaty Arch Duke Energy

East Bend Station

Croplands

MRCSP Field Test Sites

M

Appalachian Basin First Energy R.E. Burger Plant

MRCSP Region - Economic Drivers •Population: 80.4 million (26% of the U.S. population) •Gross Regional Product: \$3.1 trillion (27% of the U.S. economy) •26.3% of all electricity generated in the US •75% of electricity generated in the region is generated by coal

5

Regional Characterization Critical for Developing Implementation Plans

Nine State Geo Teams assist in identifying and characterizing reservoirs across state lines

Figure 4. Cross Section of subsurface geology for carbon sequestration for part of the MRCSP region

Piggyback wireline logging, coring, etc. fills gaps in knowledge base, and stretches research funds

Ohio Coal Development Office strong supporter of geological characterization efforts through cofunding of activities.

NOTES: *CO₂ PRODUCED WITH OIL IS RECYCLED BACK INTO REEF. ALL LOCATIONS ARE APPROXIMATE.

NOT TO SCALE

Outreach and Education Critical to Success of the Program

- DOE/NETL Best Practices Manuals
- NATCARB Database and Publications
- EPA Guidelines Requests for Comments
- Industry Mtgs & Conferences
- Trade Associations

Proactive Approach

- Communication Plan
- Annual Partner's Meetings
- Site Visits
- Community Relations
- Outreach Materials
- Website

DOE/NETL has worked with us and our partners to structure a program that adds to the knowledge base and extends the state-of-the-art.

Core Energy, LLC our host site and CO₂ supplier for 10 years of collaboration

The **Ohio Coal Development Office** has provided consistent and significant cofunding for the regional characterization efforts of the MRCSP.

The nine state **Geology Surveys and Universities** have been essential in expanding the results into regional implementation plans.

Battelle's MRCSP team members for work shown here

Oil fields in various production stages

- Late-Stage EOR Reefs (Task 3) Highly depleted with extensive primary and secondary oil recovery.
- Active EOR Reefs (Task 4) Completed primary oil recovery and secondary oil recovery is under way

• Pre-EOR Reefs (Task 5)

Undergone primary oil recovery but no secondary oil recovery is attempted

Summary of Progress

- Completed baseline monitoring and site preparation
- ~240,000 metric tonnes injected in late state reef
- >25,000 metric tonnes net CO_2 in active EOR reefs
- Operational and subsurface monitoring underway
- Reservoir analysis shows closed reservoir conditions
- Phase chance and compressibility affect pressure
- Initial static and reservoir models prepared
- Injection in new EOR reefs likely to start in early 2015
- Regional mapping/characterization across nine states

Many Operational and geological factors affect CO₂ injection and storage in EOR Fields

- Production history for each reef needs to be known, including:
 - Original estimates of fluids (oil, gas, brine)
 - Primary production history
 - Secondary recovery, CO₂ injection and retention
- Current operational constraints determine how much CO₂ is stored within each reef at a given time
- Geologic factors such as:
 - Size of the reservoir
 - Configuration of the wells
 - Relative permeability
 - Solubility of CO₂ in brine and oil
 - Reservoir temperature and pressure

Core Energy's EOR Infrastructure used for Testing CO₂ Storage

Dover 33 is the main test bed

Active reefs also being monitored

Battelle

The Business of Innovation

Dover 33 Reef EOR Operations

Dover 33 - Cumulative Production/Injection

Dover 33 Reef Wells

- 3 active wells
- Well 1-33 (vertical well) is the CO₂ Injection well.
- Well 2-33 (horizontal well) is a former production well that was used as a monitoring well. This well is an open borehole.
- Well 5-33 (high angle well) is a former production well that was used as a monitoring well.

Surface of A-1 Carbonate Showing Reef Structure

A portfolio of technologies is being tested at the Dover 33 late stage reef

Activity	Before Injection	Early Injection	Mid Injection	Late Injection	After Injection
CO ₂ flow		Х	Х	Х	
Pressure and temperature	Х	Х	Х	Х	Х
Wireline logging	Х		Х		Х
Borehole gravity	Х				Х
Fluid sampling	Х		Х		Х
VSP	Х				Х
Microseismic	X			Maybe	
Satellite radar	Х	X	Х	Х	Х

Lessons learned will be applied to design the MVA plan for the newly targeted field

Baseline monitoring activities

22 **NETL**

Battelle The Business of Innovation

Safety Considerations for MRCSP Fieldwork

InSar ACRs – heavy

equipment operation

- Wide variety of work -- wide range of safety considerations
- All work completed safely to date!

Fluid Sampling and Reservoir Testing – high pressure fluids, well work

Seismic Activities – well work, explosive hazards

Well Workovers – well control, overhead hazards, heavy equipment

Wireline Logging – well work, radiologic hazards

> **Battelle** The Business of Innovation

23

Vertical Seismic Profile

- Five walk-away lines centered around 1-33 injection well
- Processed data shows increase in resolution, though questions remain regarding potential migration errors
- VSP will be repeated after injection is completed

North-South Line

Battelle

The Business of Innovation

Receiver Locations

Comparison of Surface and Borehole Seismic Data

• 3D Data

- The two images show nearly the same geologic slice
- The VSP shows higher resolution and more internal reef character
- Curvature seen on the edges of the image is a processing artifact

East-West VSP Line Detail

Microseismic Monitoring

- Monitoring in Dover 33 well 5-33 from 3/20/13 4/1/13, during and after a short injection test
- Data quality was good for confidence in event picks
- 34 events recorded, but none in the reef
 - Detectable events verify the ability of the array to detect events
 - Events were located using a velocity model created from the available sonic logs in and around the reef
- Maybe repeated after injection

Microseismic Event Locations

Pulsed Neutron Capture

Completed baseline and repeat logs in two wells (2-33 and 5-33)

- Processing to distinguish liquid (oil/brine) from gas (CO₂/methane) phase
- Additional processing may distinguish between oil and brine
- Initial results show increase in fluid phase constituents and a decrease in gas phase constituents – CH₄ dissolving in oil and CO₂ phase change to supercritical?
- Further logging events may also help distinguish phase behavior from fluid saturations

Borehole gravity surveys conducted to measure CO₂ saturation

- Gravity meter takes point measurements along the injection wellbore
- Data is then converted to density
- Repeat surveys indirectly measure the change in CO₂ saturation

Geochemical sampling and analysis

- Major and trace element in fluids
- Isotopic composition of gas, water, carbon compounds
- Seeking regional core samples to analyze mineralogy, porosity, pore networks
- Integrating results into predictive models to better understand geochemical processes
- In collaboration with Ohio State

- Installed reference points (ACRs)
- Completed historic analysis and >one year of operational monitoring
- No significant elevation change detected so far

Source: TRE Canada, Inc.

CO₂ Injection and Pressure Response

History Matching Method Was Used for Analyzing Injection-Fall-Off Tests

- History matching was implemented using analytical reservoir model (WellTest[™])
- History matching process:
 - Using measured injection record for each CO₂ injection test, simulate pressure response in the injection well and monitoring wells;
 - Adjust model parameters to match the measured pressure response during the injection-falloff sequence

Elapsed Time (hr)

Example History Match Plot for a Single Injection Fall-Off Event

Injection Well Pressure Match

Injection Well Derivative Match

Monitoring Well 5-33

Monitoring Well 2-33

Battelle

The Business of Innovation

35

Injection Well Pressure Match

Injection Well Derivative Match

Monitoring Well 5-33

Monitoring Well 2-33

Comparison of Mobility Values from Injection Well Data (left) and Monitoring Well Data (right)

Comparison of Permeability Values from Injection Well Data (left) and Monitoring Well Data (right)

37

CO₂ Phase Behavior During Tests Based on P&T at Injection Well

CO₂ Compressibility During Tests Based on P&T at Injection Well

Summary of Fall-Off Testing (cont'd)

- It was not possible to match all injection/fall-off events
- Despite limitations of analytical modeling approach, the following conclusions can be made:
 - The Dover 33 reef behaves as a closed system, as evidenced by pressure build up over time
 - It can be modeled as a circular reservoir with radius of ~1,000 to 2,000 ft (most scenarios suggested radius <1,500 ft)
 - Permeability ranges from ~ 1 to 42 md based on injection well results and ~ 2 to 23 md based on monitoring well results
- EPA Class VI UIC Regulation requires periodic Fall-Off Testing; existing analytical methods may not be adequate for EOR reservoirs.

Final Geologic Model

Sensitivity of dynamic reservoir behavior to alternate geologic models

Static Earth Model (SEM) Level 1

Property distributions constrained by geologic formation surfaces.

Static Earth Model (SEM) Level 2

Property distributions constrained by lithofacies.

Geologic surfaces based on 3D seismic and well data.

Dover-33 (carbonate reef) represented in various levels of geologic detail

SEM1 Porosity Model

SEM2 Porosity Model

Goals of Reservoir Modeling

- Scientific process understanding (e.g., how does CO₂ move through the formation and interact with oil/brine)
- Engineering system design (e.g., well rates/location needed to maximize recovery and optimize storage)
- Calibration history matching (e.g., update description of subsurface by comparing model predictions to observations)
- Regulatory compliance demonstration (e.g., what is the risk of CO₂ leakage)
- Outreach visualization (e.g., animation of system evolution)

Phase-III Modeling Tasks

- Task 1.11 Assessment and Modeling of Niagaran Reefs
 - CO₂ storage potential in Niagaran reef trend
- Task 3.4 Reservoir Modeling & Analysis (Late Stage Reefs)
 - Prediction/history matching of CO₂ injection response
- Task 4.3 Reservoir Modeling & Analysis (Active Reefs)
 - Prediction/history matching of CO₂ injection response
- Task 5.4 Reservoir Modeling & Analysis (New Reefs)
 - Design of optimal CO₂ injection scenarios
 - Prediction/history matching of CO₂ injection response

Dattalla

Task 3 (Dover 33) Dynamic Modeling

1. System / reservoir specification

Black-oil Model History Match

"Validation" with Phase III Injection Data

Compositional Model History Match *Primary Production*

Ongoing/Future Modeling Activities

- Complete compositional model history match for secondary recovery period
- Predict injection pressure response for Phase III injection, and adjust model parameters as needed to match field data
- Repeat exercise for Level 2 SEM (lithofacies model)
- Extract single-well simulation model for detailed analysis of transient pressure response from injection-falloff periods.
- Incorporate geochemical and geo/mechanical aspects
- Investigate applicability of material balance type models

Material Balance with CO₂ Injection

Fluids produced

CO₂ injected

 $N_{P}(B_{o}-R_{s}B_{g})+G_{P}B_{g}+G_{P,CO_{2}}B_{CO_{2}}$

 $G_{i,CO_2}B_{CO_2}$

 C_t

Injection Response in a Closed Volume

$$(P_i - \overline{P}) = \frac{Q}{Ah\phi c_t}$$
$$= c_o S_o + c_g S_g + c_w S_w + c$$

- If c_t is known, we can predict pressure buildup from injection of known volume (or storage capacity upto discovery pressure)
- $c_{\rm o} \sim 10^{-5} \text{ psi}^{-1}; c_{\rm w}, c_{\rm f} \sim 10^{-6} \text{ psi}^{-1}$
- $c_{\rm g} \sim 10^{-4}$ psi⁻¹ (pressure. dependent)
- [Q] Can we obtain insights on c_t versus p relation from field data?

Battelle The Business of Innovation

What Can We Learn From Modeling?

- Workflow for building SEMs with limited data, and calibrating dynamic models to production history
- Impact of geologic uncertainty on reservoir behavior
- Factors affecting CO₂ retention in closed systems
- Simplified models for predicting CO₂ storage capacity in depleted reef reservoirs
- Significance of coupled processes in depleted reefs

Questions?

Please visit www.mrcsp.org

