Prototyping and testing a new volumetric curvature tool for modeling reservoir compartments and leakage pathways in the Arbuckle saline aquifer: reducing uncertainty in CO₂ storage and permanence

Project Number (DE-FE0004566)

Jason Rush (W. Lynn Watney, Joint PI)

University of Kansas Center for Research Kansas Geological Survey

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 12-14, 2014

Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary

Benefit to the Program

Program goal addressed:

Develop technologies that will support the industries' ability to predict CO_2 storage capacity in geologic formations to within \pm 30 percent.

Program goal addressed:

This project will confirm — via a horizontal test boring — whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If validated, a new fracture characterization tool could be used to predict CO₂ storage capacity and containment, especially within paleokarst reservoirs.

Project Overview:

Goals and Objectives

Evaluate effectiveness of VC to identify the presence, extent, and impact of paleokarst heterogeneity on CO₂ sequestration within Arbuckle strata

- Develop technologies that demonstrate 99% storage permanence and estimate capacity within ±30%.
 - Predict plume migration...within fractured paleokarst strata using seismic VC
 - Predict storage capacity...within fractured paleokarst strata using seismic VC
 - Predict seal integrity...within fractured paleokarst strata using seismic VC
- Success criteria
 - Merged & reprocessed PSTM volume reveals probable paleokarst
 - Within budget after landing horizontal test boring
 - VC-identified compartment boundaries confirmed by horizontal test boring

Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary

Methods

- Merge, reprocess, interpret PSDM 3-D seismic
- PSTM & PSDM VC-processing (Geo-Texture)
 - Pre-processing: Raw, Basic PCA, Enhanced PCA, Robust PCA
 - Lateral wavelength resolutions: high (~50-ft), medium (~150-ft), long (~500-ft)
- Build pre-spud fault & geocellular property models
- Locate, permit, drill, and log horizontal test boring
- KO & lateral, slimhole & hostile, logging program with Compact Well Shuttle™
 - Triple combo
 - Full-wave sonic
 - Borehole micro-imager.

- Formation evaluation & image interpretation
- Seismic inversion, variance & ant track
- Construct discrete fracture network (DFN) Model
- Revise fault, facies, and property models
- Simulate & history match

Presentation Outline

- Benefits, objectives, overview
- Methods
- Setting & background
- Technical status
- Accomplishments
- Summary

Age & Regional Setting

Kansas Setting

Structure Map — Early Paleozoic

Arbuckle Isopach Map

W-E Cross Section — Central Kansas Uplift

Karst Process-Based Model

Study Area — Bemis Shutts Field

Study Area — Bemis Shutts Field

Arbuckle Analog

Whiterockian Paleokarst Outcrop Analog — Nopah Range, CA

Field Setting

Precursor Strata

Paleokarst Rock Fabrics

Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary

Time & Depth Migration

Arbuckle PSTM

Arbuckle PSDM

Average Velocity to Arbuckle

Arbuckle Velocity & Well Control

Volumetric Curvature

- A measure of reflector shape:
 - Most-positive: anticlinal bending
 - Most-negative: synclinal bending
- Multi-trace geometric attribute calculated directly from the 3-D seismic volume

- Calculated using multiple seismic traces and a small vertical window
- The analysis box moves throughout the entire volume
- VC attributes can be output as a 3-D volume
- Provides quantitative information about lateral variations

PSDM VC Processing Results

Arbuckle PSDM VC Horizon-Extraction

Proposed Lateral to *Test* VC Attributes

Objectives:

- Land well outside paleocavern
- Drill through paleocavern
- TD in "flat-lying" host strata
- Run Triple, Sonic, Image tools

Unanticipated results:

•Strataform breccias outside dolines

•no mud losses!

Image Log Facies — Facies Model

Crackle

Bedding

Dilational Fracture

Dilational Fracture

Bedding

Dilational Fracture

Matrix-Supported

Code	Name	Parent	Color	Pattern
0	Dilational Fractu		-	
1	Bedding-Dolomi			TTT
2	Matrix-supporte		-	
3	Crackle Breccia		•	XXXXXX
4	Chaotic Breccia		-	

ported Chaotic

VC-indicated Compartments Consistent with Log Interpretations

Formation Evaluation

Formation Evaluation

New Field-Wide Fault/Fracture Model

~201 Faults...thanks to Rock Deformation Research plug-in

VC-Faults *Match* Seismic Faults

Probability Maps for Conditioning Geocellular Models Facies

Dilational Fractures

Code	Name	Parent	Color	Pattern
0	Dilational Fractu		-	
1	Bedding-Dolomi		-	TT
2	Matrix-supporte		-	17.17
3	Crackle Breccia		-	XXXXXX
4	Chaotic Breccia	1		

Crackle & Chaotic Breccia

Peritidal Dolostone & Matrix-Supported Breccia

evaporite karst in host strata

- strata-bound breccia
- anhydrite-filled molds
- geochemistry-sulfates

Discrete Fracture Network Modeling

3-D Volumetric Curvature Volume

Filtered 3-D VC Geocellular Model

VC cells absent

Other Seismic Attributes: Semblance vs VC

Seismic Attributes: Coherence vs VC

Seismic Attributes: Coherence vs VC

Geologic Findings & Interpretations

Dynamic Modeling Objectives

Explore the effect of fault transmissibility on:

- CO₂ Injectivity
- Storage capacity
- Vertical and horizontal CO₂ movement

simulation studies performed by Eugene Holubnyak (KGS)

Dynamic Simulation Parameters

Temperature	122 °F	
Temperature Gradient	0.008 °C/ft	
Pressure	2093 psi	
Pressure Gradient	0.42 psi/ft	
Reservoir Depth	4,500 – 4,900 ft	
Perforation Zone	4,750 – 4,850 ft	
Perforation Length	100 ft	
Injection Period	10 years	
Injection Rate	300, 200, 200, 150 tones/day	
Total CO2 injected	3M tones	
Reservoir CO ₂ Density	580 kg/m ³	
Fault Transmissibility	1, 0, & 0.5	
Fault Count	201	

CO₂ Injection

CO₂ Injection at Year 2015

CO₂ Injection at Year 2015

Permeability I (md) 2015-01-01 J layer: 71

The University of Kansas

Fault Transmissibility Multiplier 1 vs. 0

Injectivity Profile

Year 2117

Delta Pressure and Movement Fault Trans. Multiplier set to 1

Delta Pressure and Movement Fault Trans. Multiplier set to 0

Simulation Findings to Date

Key Findings

Fault transmissibility effects for Arbukle Formation:

Injectivity and storage capacity are reduced

CO₂ movement is impacted by faults, but matrix control is dominant

Fingering occurs next to faults with similar vertical K

Future Plans

Analyze uncertainty of *flux between blocks*History match new models
Ways to estimate fault transmissibility

Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary

Accomplishments to Date

- Merged & reprocessed seismic
- PSTM & PSDM VC processing
- Built pre-spud model
- Drilled ~1800-ft lateral to test VC
- Ran extensive logging program
- Formation evaluation
- Simulated pre-spud model
- Inversion & genetic inversion
- Probability maps& property modeling
- ASME Peer Review (addressed recommendations)
- DFN modeling
- Contrast with other techniques
- Successful simulation of complex fault models
- Publication-ready figures

Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary

Summary

Key Findings

- Direct confirmation of VC-identified, fault-bound, paleokarst doline
- PSDM VC attribute consistent with structure maps and facies distribution (providing converging lines-of-evidence)
- VC cost-effective
 - Multi-component 3D seismic acquisition costly
 - Shear-wave processing (i.e., Anisotropy volumes) costly

Lessons Learned

- VC attributes fractal, requires some constraints
- Lost-in-hole tool insurance can overwhelm budget

Future Plans

- Analyze uncertainty of *flux between blocks*
- History match and forecasting
- Technology transfer publish results

Bibliography

List peer reviewed publications generated from project per the format of the examples below

• <u>Journal</u>, one author:

 Gaus, I., 2010, Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXXX.com.

Journal, multiple authors:

 MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXXX.com.

Publication:

 Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.