Utilization and Storage of CO₂ in Unconventional Reservoirs

Project Number 58159 Task 2

B. Peter McGrail Pacific Northwest National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 12-14, 2014

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂
- <u>Project benefits statement</u>: This research project conducts modeling and laboratory studies to lower cost and to advance understanding of storing pure CO2 and mixed gas emissions produced from post- and oxycombustion flue gas in unconventional geologic reservoirs.

Project Overview: Goals and Objectives

- Goal: Development of geologic storage technology with a near zero cost penalty goal – a grand challenge with enormous economic benefits.
- Objective: Employ a multidisciplinary approach for identifying key sequestration opportunities and for pursuing major research needs in:
 - Identifying R&D needs and pursuing R&D on promising low-cost technologies for utilizing CO₂ and CO₂ containing other constituents in depleted shale gas and shale oil reservoirs.
 - phase behavior and fate and transport of supercritical gas mixtures in fractured geologic formations.
 - casing material studies with water and mixed gas systems
 - development of acoustically responsive contrast agents for enhanced monitoring of injected CO₂.

Project Overview: Scope of work

- Task 2 Utilization in Unconventional Reservoirs
 - 2.1 Storage in Depleted Shale Gas Reservoirs
 - $_{\circ}$ Economics of Utilizing CO₂ in Depleted Shale Gas Reservoirs
 - Laboratory Studies
 - Evaluate reaction products, mechanisms, and rate of reactions in the shale reservoirs
 - Distinguish chemical reactivity versus physisorption processes
 - Quantify CH₄/CO₂ adsorption capacities for important shale minerals
 - Quantify effects of solvated water on gas adsorption and desorption processes
 - Molecular Dynamics Modeling
 - Identify possible reactive products and the barriers to such transformations\
 - Compare with experimental measurements to provide mechanistic insight
 - Reservoir Modeling
 - Field scale simulation utilizing CO₂ in a depleted fractured shale reservoir utilizing CO₂
 - Incorporate laboratory findings to optimize methane production
 - 2.2 Casing Materials Studies
 - Evaluating corrosion behavior of stainless steel piping
 - 2.3 Enhanced Monitoring Agents

Costs, Offsetting Revenues, and Deployment Potential of EGR in Gas Shales

- Analysis based upon USGS shale gas resource assessment volumes (OGIP); 27 assessment units in 10 basins
- Total CO₂ storage capacity presented includes:
 - Replacement of initial volume of CH₄ via primary recovery based on USGS estimates of recoverable reserves
 - Displacement of some fraction of CH₄ via CO₂-flood taken from analysis of EGR potential
- ~30 and 50 GtCO₂ of storage capacity
- Total incremental recovery ~100-5900 BCM
- Production and storage cost algorithm development

Province	Theoretical CO ₂ Storage Resource (MtCO ₂)												
	Low	Moderate	High										
Paradox Basin	932	1,181	1,426										
Denver Basin	83	105	127										
Permian Basin	2,972	3,766	4,547										
Bend Arch-Ft. Worth Basin	2,219	2,812	3,395										
Gulf Coast	10,565	13,389	16,166										
Anadarko Basin	1,931	2,447	2,954										
Arkoma Basin	2,256	2,859	3,452										
Michigan Basin	632	801	968										
Illinois Basin	321	407	491										
Appalachian Basin	10,609	13,445	16,233										
TOTAL CAPACITY, GAS SHALES	32,519	41,212	49,759										
TOTAL CAPACITY, U.S. EOR PLAYS		11,943											
TOTAL CAPACITY, U.S. (NON SHALES)		3,046,989											

CL Davidson & BP McGrail. 2014. Economic assessment of revenues associated with enhanced recovery and CO₂ storage in gas-bearing shales, IJGGC, submitted.

Fundamental Gas Adsorption Studies

- scCO₂ adsorption reaches a max (0.9-1.2 mmol CO₂/g clay) near 0.4 g/cm³ (50°C)
- Molecular Simulations: explaining desorption behavior
- Implications: Enhanced reservoir modeling capabilities.

HT Schaef, V-A Glezakou, et al, 2014. "Surface Condensation of CO_2 onto Kaolinite", ES&T *Letters*, 1(2): 142-145.

Fundamental gas adsorption studies: expanding clays with CO_2

Objective: Measure adsorbed and interlayer concentrations of CO₂ on montmorillonite

Pressurized XRD Results:

- 0W hydrated Na-SWy-2 is collapsed and does not expand with scCO₂
- 1W hydrated Ca-SWy-2 expands in the presence of pressurized CO₂
- QCM Results: CO₂ concentrations on Ca-SWy-2 > Na-SWy-2; the difference can be assigned to the interlayer of Ca-SWy-2.
 - Highest concentration interlayer CO₂ is estimated at ~0.81 mmol/g clay.
- Implications: Maximizing CO₂ adsorption and managing reservoir fluid transport properties is possible through designing injection strategies.

HT Schaef, JS Loring, et al., **2014**. Competitive Sorption of CO_2 and H_2O in 2:1 Layer Phyllosilicates, GCA, **submitted**.

Fundamental gas adsorption studies: H_2O and CO_2 adsorption on Na-SWy-2

JS Loring, et al., **2014**. *In situ* study of CO_2 and H_2O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. *Langmuir*, 30 (21), pp 6120–6128.

Fundamental gas adsorption studies: H₂O and CO₂ adsorption on Ca-SWy-2

HT Schaef, JS Loring, et al., **2014**. Competitive Sorption of CO_2 and H_2O in 2:1 Layer Phyllosilicates, GCA, **submitted**.

Distinguishing CO₂ Interactions: *In situ* MAS-NMR Studies

- Experimental Objective: Exposing montmorillonites to ¹³CO₂ to study sorbed CO₂ species
 - Bulk CO₂ (no clay): single resonance at 125.4 ppm
 - Exposure to clay (50 psi): two new resonances are observed, indicating two different types of CO₂
 - Depressurization: a single resonance remains and is attributed to intercalated CO₂

Application: CH₄/CO₂ mixed gas systems

Pressurizable Reaction Vessel with NMR Rotor

Powdered clay sample in side rotor

Characterizing Interactions Between Clays and Mixed Gases (CO₂/CH₄)

Experiment Approach: Utilize in situ techniques to examine clay behavior in mixed gas systems

HXRD

- Basal spacing constant in pure CH₄ with only minor changes to the basal spacing
- Low partial pressure of CO₂: expansion of d(001) spacing to 12.41Å

QCM

- Maximum concentrations ~0.9 mmol CH₄/g clay
- Low partial pressure of CO₂: large mass change

ATR-FTIR Titration Study

- No direct evidence of CH₄ intercalation
- CO₂ sorption in CH₄/CO₂ system behaves similar to pure CO₂ system

Modeling Enhanced Recovery of Methane with CO₂

- STOMP-EOR simulates multiphase, multicomponent flow and transport of CO₂, methane and oil components coupled with geochemical reactions
- Simulations are being used to investigate relative importance of methane release mechanisms at the field scale
 - advection through hydraulic and natural fractures
 - diffusion and desorption from the shale matrix
- CO₂ is being utilized for its ability to preferentially adsorb to kerogen and clays enhancing the desorption of methane

Hydraulic Fracture stages in CO_2 injection and CH_4 production wells (unconnected)

Comparison of methane recovery rates w/wout CO₂ injection and w/wout connected stages between inject/production wells

Acoustically Responsive Contrast Agents for Enhanced Monitoring of Injected CO₂ in Geologic Formations

- MOF nanomaterials offer opportunity to expose a very large surface area in limited volume
- Introduction of flexible ligands in MOF structure allows for tuning of librational absorption modes that are detectible through conventional seismic imaging or by new laser Doppler vibrometry methods.
- Dispersion in scCO2 to form a nanofluid provides for injectable acoustic contrast agent

Acoustic Impedance Tube Instrument

100-mm and 30-mm diameter impedance tubes

30-mm diameter impedance tube sample holder

~30-mm diameter MOF pellet in sample holder

Making 100 mm DIA MOF Pellets

Transmission Loss Comparison Between MOF and Sand Discs

- MOF exhibited significantly higher transmission loss (dB/mm) compared with sand materials
- > Transmission loss increases as a function of frequency in the critical region <300 Hz
- Tests with new flexible MOFs underway
- Nanofluid dispersion trials planned after completion of impedance tube tests identify most promising materials

Accomplishments to Date

- Significant progress has been made in developing new high pressure adsorption data on key minerals in shales
- Set of new in situ tools enabling separation of adsorption, intercalation, and reaction processes in scCO₂
- Influence of water in the system is being elucidated by molecular simulations
- Proof-of-principle demonstrated for novel acoustic contrast agents for CO₂ monitoring and fracture network mapping

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

					_				FY	2012											FY2	2013										FY	2014				
				Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct No	/ Dec	Jan	Feb	Mar	April	May	June	iuly A	۱ug (
	Task Name							1		i		1	[]	i T				i			1		ΙŢ	I	Ι				1	i T	1	i T		i T	ΙĪ	í í	Ī
	Task Name	_			+-	-	+-	+	1	1	1	1	1	i				i –		1	1	1			- 1					i –		i –	-	i I			+
#	Project Management	Start	Finish		1					-		1		Ì				i –		1	1									1		i –					
1	Manage Project	Jul-08	Sep-14			1	T	!	1	1	1	{	1	i	1	1	1	i		1	1		!		1					i	T	i i	T			1	
	Casing Materials Studies				i		1		i i		i	1	1	1	1		1	1		1	1	i			i					1		1					i
2		Jul-08	Sep-14		—	4	<u> </u>	4	1	-	1	i -	i T	1	1	1	T	1		1		1			-				-	÷		÷	_				
									1		1				1		1	<u> </u>		{										-	-		-		l i		
3	Storage in Depleted	Jul-08	Sep-14			4	+	4	-	1	-	1	1		T	-	1		T	-	1	-							÷	<u> </u>	÷	÷	÷–	H		-+	
			-	_	-	-		1	1	1	1	1	{		i –		i –	-	1	-													-	L j			
3.1		Oct-10	Sep-14					1		1			1		i		i –		i.		1								1		1						
0.1	002	000 10	00p 14		1		1		1		1		}	1	i	1	i.	1	i	1									1	T	1	1	1	1			
	Laboratory Studies and					i -		i –		i		1	1	1	1		1	1	1	1	i –			i							1					- in	
3.2	Molecular dynamics	Oct-10	Sep-14			1	<u> </u>	1	1	Ì	1	1	{		i	Î	1	1	i	1	1	i i		1	1					1	-	1	-			-	
	Reservoir Modeling									1	1	1		Ì				İ –		1	1							i i		Ì I		1 T		i l			
3.3	-	Oct-10	Sep-14			1	-	1	1	i	1	1	t		1	1	1	1		1	1	1	i I	Í	T				1	1		1	1				-
	Enhanced Monitoring	M- 17	0	1						1		1	1	i	1			i .		1									1	i		i					
3.3	Agents	Mar-13	Sep-14											i.					1	1											1		1				
			Milesto ne Date		i T		i I				1	1	1							1		i		Ţ	i										i i		
			ne Date		i –		i -					1	1	1											i												
	Milestone Descript	ion			1		+			¥				1	1				¥	-									-	-	4		+				
4	Quarterly Reports						1			[ſ		i	Ĺ			i										i	ſ	i –		Ĩ.	<u> </u>			
	Issue Journal article on Ra	aman											1		i l		i		1										í		j						
9	spectrum of scCO2-O18 a	and re-	Mar-12 Sep-12		<u> </u>				-	•			1		i –		1	1	1		İ.			1					1	1	1	1	1	1 ;			
	evaluation of the Fermi res	sonance			<u> </u>	+	<u> </u>	+		1	-	-			-			-		{	1	ļ	<u> </u>							+			+	ł	<u> </u>	-+-	
	issue journal article on sel	ected							1 1	l i																											
10	pure silicate mineral react	ivity in	Mar-12 Sep-12 / t Jun-13		—		÷			1	1	1	1	\rightarrow	•			1		1	1		i	i						1						- i	
	the CO2-H2O-SO2 syster	m			1	1		6		1		1		1	1			i i						1						1		1			<u> </u>	i i	
	Issue journal article on mo	odel clay						1			1			1				1			1				1					1							
11	minerals and their reactivit	ty in wet	Jun-13		1			1	1	1	1	{	1	1				i		1	1	I		•				i i		i i	1			i !	! I.		
	scCO2 containing impuritie	es										1		i –				i		1				- T	1					i i		1		i !	1		
	Complete MD cimulations	and			+	<u> </u>	+	<u> </u>	1		+		-		<u> </u>			-		 	<u> </u>								<u> </u>	<u> </u>	+			÷	└──┼	<u> </u>	_
	issue journal article on sel	ected			1 1		1 1		i –	1								1		1		i i			- I					1				(I	1 1		
12	clay minerals in the CO2-I	H2O-	Sep-13		<u> </u>	<u></u>	÷==	<u> </u>				-	1		1	-	1	-	1								•								(i		
	SO2 system		10 Sep-14 10 Sep-14 10 Sep-14 13 Sep-14 13 Sep-14 13 Sep-14 14 Milestone 15 Sep-14 16 Mar-12 2 Sep-12 ay Jun-13 Sep-13 Sep-13 iic Dec-14 Mar-15 Mar-15 nd Mar-15 rate Z		1		i –				i	1	1		1		1								i												
	Journal article detailing vo	lumetric			i l		1	1		1			1						1	1		1		1	i												
13	changes occurring in swell	ling	Dec-14											1	i		i .														i -			. i			
10	clays when exposed to we	et	000-14		1		1	T		1	1	1	1	1	1		1	1		{		1			1				7								
	Submit journal article of th		-	-	-	+		+		-		-	-	-	-	-	1		-		-					_			+	-		-	-			\rightarrow	
	economics of CO2 storage	e in																						Ì													
14	shale reservoirs.	0 111	Dec-14				+	<u> </u>		-		1	1	1	1	-	1	1		1									•							i.	
								i –		i –		}									ĺ.			i												-i	
	Submit journal article on g	as	1				1	1		1		1									1																
15	adsorption on clay mineral	ls.	Mar-15		-	-	-																														
	Complete synthesis of acr	oustic			1		+				1	1											+			_			+		+						
	absorber candidate, obtai	in sound										1	1	j _			1	i –		1																	
16	absorption coefficients usi	ing	Mar-15			-		<u></u>		-		1	r	1			-			1						-				-		•					
	impedance tube measurer	ments																							i												
	and issue journal article	lod c '		-	1		-				-					-		-		-		-			_						4			-	F i	4	
	submit journal article on fil	ied scale			1		1					1			1		1																				
16	depleted shale das or sha	le oil	Sep-15		-						1		1		-																-						
	reservoirs																																				
Project	Advanced sequestration				-			-				-					-												<u> </u>	-	÷	-		H		-	
of unline		Task	_													1																					

Bibliography

- Schaef, HT, JS Loring, et al., 2014. Competitive Sorption of CO₂ and H₂O in 2:1 Layer Phyllosilicates, GCA, submitted,
- Davidson, CL, and BP McGrail, 2014. "Economic assessment of revenues associated with enhanced recovery and CO2 storage in gas-bearing shales", IJGGC, **submitted**.
- Lee, MS, BP McGrail, and VA Glezakou, 2014, Microstructural Response of Variably Hydrated Ca-rich Montmorillonite to Supercritical CO₂, *ES&T*, **in press**.
- Loring, JS, et al., 2014. In situ study of CO₂ and H₂O partitioning between Namontmorillonite and variably wet supercritical carbon dioxide. *Langmuir*, 30 (21), pp 6120–6128.
- Schaef, HT, V-A Glezakou, et al, 2014. "Surface Condensation of CO₂ onto Kaolinite", ES&T Letters,1(2): 142-145.
- CJ Thompson, PF Martin, J Chen, P Benezeth, HT Schaef, KM Rosso, AR Felmy, and JS Loring, **2014**. "Automated high-pressure titration system with in situ infrared spectroscopic detection", *Review of Scientific Instruments*, vol 85, issue 4, 044102.
- Glezakou, V-A., BP McGrail, HT Schaef (2012) "Molecular interactions of SO₂ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", *Geochimica et Cosmochimica Acta*, in press (DOI: 10.1016/j.bbr.2011.03.031).

Bibliography

- Windisch Jr, CF, HT Schaef, PF Martin, AT Owen, and BP McGrail (2012), "Following ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", *Spectrochimica Acta Part A* 94 186-191.
- Windisch, C. F., V. A. Glezakou, et al. (2012). "Raman spectrum of supercritical (CO₂)-O-18 and re-evaluation of the Fermi resonance." <u>Physical Chemistry Chemical Physics</u> 14(8): 2560-2566.
- Tian, Jian, Praveen K. Thallapally and B Peter McGrail, (2012). "Porous organic molecular materials", *CrystEngComm*, 2012, 14 (6) 1909-1919.
- Liu, Jian, Praveen K. Thallapally, B. Peter McGrail, Daryl R. Brown and Jun Liu, (2012), "Progress in adsorption-based CO₂ capture by metal–organic frameworks", *Chem. Soc. Rev.*, 41, 2308-2322.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail. 2010. "Structure, Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys Chem Chem Phys* 12(31):8759-71.
- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz.
 2010. "Prussian Blue Analogues for CO₂ and So₂ Capture and Separation Applications." *Inorg. Chem.* 49(11):4909-4915.

Bibliography

- Windisch CF, Jr, PK Thallapally, and BP McGrail. 2010. "Competitive Adsorption Study of CO₂ and SO₂ on Co^{II}₃[Co^{III}(CN)₆]₂ Using DRIFTS."Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy **77**(1):287–291.
- Tian J, R. K. Motkuri, and P. K. Thallapally. 2010. "Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block." *Crystal Growth & Design* 10(9):3843-3846.
- Nune SK, PK Thallapally, and BP McGrail. 2010. "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* 20(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, 2010. "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, RK, Thallapally, PK, McGrail, BP, Ghorishi, SB, Dehydrated Prussian blues for CO₂ storage and separation applications. *Crystengcomm* 2010, 12 (12), 4003-4006.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. 2009. "Spontaneous Activation of CO₂ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *Journal of Physical Chemistry C* 113.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696.

Molecular modeling with Ca-montmorillonite analogs: CO₂ sorption and intercalation

- Ca-montmorillonite analog containing two interlayer cations in unit cell
- Under saturated clays (1-3 H₂O/Ca²⁺) have significant capacity for CO₂ intercalation (up to 2 CO₂/Ca²⁺) maintaining ≤ 1W expansions

HT Schaef, JS Loring, et al., **2014**. Competitive Sorption of CO_2 and H_2O in 2:1 Layer Phyllosilicates, GCA, **submitted**.

- Adsorption is driven by a scCO₂ film formation on the surface resulting in adsorption energies (red line) more favorable (more negative) than the average CO₂-CO₂ interaction in bulk scCO₂ (green)
- Blue line provides an estimate of the chemical potential driving the film formation