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Project Overview
Goals and Objectives

= The goal of this project is to calibrate key parameters in
reactive transport models that will be used to predict final
storage of CO, in carbonate EOR fields.

= This project will advance science-based forecasting for
the transition of CO, — EOR operations to storage sites.

= Success is tied to the ability to scale reactive-flow and
transport parameters over a range of carbonate rock
types and permeability.
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Benefit to the Program

= This research project quantifies relationships between
fluid flow, heterogeneity, and reaction rates specific to
carbon storage in carbonate reservoirs by integrating
characterization, solution chemistry, and simulation data.

= This project meets the Carbon Storage Program goals
to develop technologies that will support industries’
ability to predict CO, storage capacity in geologic
formations to within =30 percent.
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Technical Status

Task 5.1 — Predict porosity and permeability evolution in
carbonate storage reservoirs

Pore (microscopic) scale ~ um Core (laboratory) scale ~cm Large (reservoir/field) scale ~ km
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Important findings from Weyburn study

Mineral Reaction Rates
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Key Characteristics Arbuckle Carbonates Cores

= Highly impermeable
compared to downhole
estimates

Dominated by less reactive
dolomite

Dominated by fracture flow

1.5in / 38mm

2.5x increase in diameter
for “second-generation”
Injection zone samples
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Conducted core flood experiments on 2 samples
from baffle zones and one from injection zone

* 60°C temp, 25 MPa confining pressure
» constant flowrate 0.034 mL/min

e 1.1m NaCl brine with pCO,, = 3 MPa,
at carbonate equilibrium
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Enhanced fracture permeability in the injection
zone
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Observe similar volumes of calcite and dolomite
dissolution based on solution chemistry
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Reactive Transport Model

Mineral Reaction Rates

Reactions
: Ef1 1
calcite + H* = Ca*™ + HCO." Ml e, b
| Car* +HCOs @——Sk R[T 29315} 1_2
dolomite + 2H* = Ca** + Mg** + 2HCO- T 29815k € K

COpaq+ H,0 = H* + HCO;
MgHCO,* = Mg** + HCO,
CaCOs,q+ H* = Ca** + HCO;-
CaHCO,* = Ca** + HCO;
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Nested Grid
300° um3grid — three distinct regions

full domain high permeable zones medium permeable zones low permeable zones
(e.g. fractures) (e.g. dolomite) (e.g. calcite clusters)
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Map connected fractures and macro pores
to coarser grid

fracture and macro-pore  coarser regular grid system mapped high permeable mapped low permeable
representation with the  with the grid scale as 1 mm zones zones
grid scale of 300 pm

Note that the mapped medium permeable zones are not shown here.
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Example of nested gridding of individual fractures
onto coarser grid

map

individual fractures
extracted from XCMT data
(image resolution 42.6 pm)

individual fractures represented individual fractures represented
by 300 um grids by 1 mm grids
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Excellent match to pressure curve

= Experiment
= Model
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Larger model grid size over estimates porosity
Increase

Flow direction

Model Tomography
300° pm3 -1 mms3 ~403 pym?3
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Model predicts more calcite dissolution at later
times resulting in higher pH

B T r . . . .
¢ Experiment 0.08}F ® [Cxperiment-Ca .
= Model = Model - Ca
0.07F ®  Experiment - Mg ]
2.9 - = Model - Mg
o
0.06
=R
E
T s ;o.os .
=
+ 8 004F @ "X ] T Y ® Y .. .
® o [~
45+’0' oo ®o ° ¢ o 1 oo3f
®
0.02

0 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Time (hour) Time (hour)

Lawrence Livermore National Laboratory UL-




Task 5.2 — Experimental calibration of NMR well logs to
estimate permeability in carbonate reservoirs

Flow Units in the Lower Arbuckle Injection Zone, ~4900-5160 ft
Gasconade Dolomite to Gunter Sandstone

KGS #1-32 o 3 KGS #1-28 H Wells 3500 ft apart
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Methodology needed to refine permeability determination

= NMR - extract V/S for complex k=A" TEM ' ([)4
pore geometry

e Measure @, T,,p T, = 1 (K) + T
2 — 2B

= X-ray tomography p\S

« Measure V/S (resolution dependent) —
= Independent measure 57, |

permeability el

= Two distinct carbonate lithologies D

« Arbuckle Dolostone, Wellington _

Kansas

* Weyburn Limestone and Marly
Dolostone, Canada
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Weyburn cores provide independent calibration data

set: K .. ~0.05 mD
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Estimates of permeability from NMR measurements
depend on pore geometry

Weyburn limestone k = A - TLZM . (p4
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Preliminary results from Wellington core: Injection zone
permeability varies by 3 orders of magnitude
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Accomplishments FY14

(d Task 5.1 — Predict porosity and permeability evolution in
carbonate storage reservoirs

» Conducted reactive transport experiments with core from the
Arbuckle Dolostone, Wellington Kansas

» Developed a reactive-transport model that captures
dissolution induced increases in fracture permeability

d Task 5.2 — Experimental calibration of NMR well logs to estimate
permeability in carbonate reservoirs

» Developed a methodology to refine permeability estimates
from NMR well logs in carbonate storage reservoirs

» Started NMR and tomography analysis of Arbuckle
Dolostone, Vuggy Limestone, and Marly Dolostone

Lawrence Livermore National Laboratory




Implications for reservoir scale simulations for CCUS

O Key Findings
» Anisotropic permeability and mineral dissolution

play dominant roles on porosity and permeability
changes that will occur during CCUS operations

» Preliminary — Porosity/Permeability/Surface Area
» Fracture flow requires different power functions

» NMR should prove to be a useful tool to estimate
reservoir permeability once calibrated

O Future plans are to

 Conduct several more experiments to capture a
range sample heterogeneity for the Arbuckle

 Develop more robust calibration of primary reactive-
transport equation

O Finish and apply NMR permeability calibration to
well log data and perhaps another site.

Flow direction

Arbuckle Injection Zone
10 fold increase in permeability
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Appendix

e QOrganizational Chart
e Gantt Chart
 Bibliography
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. . N
Fuel Cycle Innovations Carbon

. | Management
(Roger Aines) ) (Susan CarroII)J

LLNL Carbon
Sequestration

\n
|

Program

— — e —

Technical Staff

)

Task 1. Active
Reservoir

Management

~—

)

Task 2. In
Salah

~——o

S

Task 4. Snovit

~———

S

Task 5.
Carbonates

~———o

Boucier

Buscheck
Aines

— — ~

Expertise

4

Ezzedine, Hao, White

.

p
Chiaramonte, White,

Hao, Wagoner,
Wiash

Carroll, Hao,
Mason, Smith

25

.

Subsurface
Hydrology
|

.

|_| Computational
Geomechanics
|

.

Experimental
= and Theoretical
Geochemistry

——

)

—  Seismology

——

Structural
Geology

Lawrence Livermore National Laboratory
LLNL-PRES-642563

L




Gantt Chart: Task 5 Carbonates

Planned | Planned | Actual Actual
Task Milestone Description*® Fiscal Year 2014 Start End Start End Comment
Ql | Q2 | Q3 | Q4 Date Date Date Date

5.1.1.1 Commence Reactive Transport Model 10/1/11 complcte

Finish Model Calibration for Weyburn data
5.1.1.2 set 10/1/11|  11/1/12( 10/1/11| 1/15/13 |complete
5.1.13 Finish Pre model of experiments 11/1/12 2/1/13| 11/1/12| 6/15/13 |complete
5.12.1 Finish plan for core flood experiments 10/1/11 12/1/12 complete
5122 Commence experiments 12/1/12 complete
5123 Conduct experiments 9/30/14

Refine model to data from carbonate
5.13.1 expenments 1/30/14| 9/30/14
5211 Finish protocol for NMR calibration study 10/1/13| 11/30/13

Secure core samples from KGS and submit
5212 for tomography imaging analysis 10/1/13| 1/15/14

Evaluate heterogeneity from tomography
5213 anlaysis 1/30/14| 3/15/14
52.14 Conduct NMR/MRI analysis 6/30/14| 1/30/15

Develop permeability model using NMR,
522 tomography, and permeability data 1/30/15| 6/30/15
523 Apply new model fo Kansas well log data 6/30/15( 9/30/15
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Task 5.1 — Predict porosity and permeability evolution in
carbonate storage reservoirs
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Nested grid model to scale mineral and pore distribution from
tomography resolution (~40° u®) to model grid (1 mm?3)

(d The connected fractures and macro pore clusters were then mapped
onto a regular grid system with the grid block size as ~3003 um3

connected fractures/macro- regular grid system with connected fractures at
pores in XCMT images the grid size as a grid scale of

(image resolution: 42.6 ym) ~300 pum ~300 um I-
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