

Enhanced Analytical Simulation Tool (EASiTool) for CO₂ Storage Capacity Estimation and Uncertainty Analysis DE-FE0009301

Seyyed A. Hosseini Bureau of Economic Geology University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 12-14, 2014

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary

Benefit to the Program

- Major goal
 - Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Project benefit
 - This research project is developing an Enhanced Analytical Simulation Tool (EASiTool) for simplified reservoir models to predict storage capacity of brine formations. EASiTool will consider advanced two-phase flow theory, geo-mechanically imposed limitations and active brine management to estimate the storage capacity in open and closed boundary conditions.

Project Overview: Goals and Objectives

- Project goals and objectives
 - EASiTool is intended to be
 - For technical and nontechnical users.
 - Provide fast, reliable and science-based estimate of storage capacity.
 - Provide uncertainty analysis.

Project Overview: Goals and Objectives

- Task 2 completed.
- Task 3 started.

Technical Status

Gulf Coast Carbon Center

- Currently under Task 3 the main focus is on
 - Numerical simulations on seal deformation
 - Theoretical work developing analytical equations for estimating fracture pressure
 - Developing EASiTool interface

• EASiTool V1.0 released on 30/4/2014.

http://www.beg.utexas.edu/gccc/EASiTool/index.php

GoldSim Player - Version5_8						10.00 (MCPA		Contract of	8.40 8.70		×
1. Reservoir Parame	eters							EASiT	ool 🚑		ĥ
Pressure (MPa) =	10	Sensitivity analysis?		Le	ength of a reservoir ((m) - shorter side =	10000	ENHANCED ANALYTICAL SI FOR CO ₂ STORAGE CAPACITY UNCERTAINTY QUAN	MULATION TOOL ESTIMATION AND		
Temperature (C) =	40	Sensitivity analysis?		Γ		Aspect r	ratio:		P		
Salinity of brine (mol/kg) =	0.5	Sensitivity analysis?		1	Storage reser	voir (Vertical:	(1:1.5 •		Ecor	NOMIC Coast Coast Carbon	
Thickness of a reservoir (m) =	50	Sensitivity analysis?		R	eservoir boundary:	Closed 🔻			GEO	LOGY Center	-
Porosity =	0.2	Sensitivity analysis?		0	pen boundary	O GOLDSIM/	GO REALIZATION: 2/	IdSim Run Controlle	er 		
Permeability (mD) =	100	Sensitivity analysis?	Minimum Ma	uximum C	losed boundary	· GIZ	TIHE-STEP: 60/60	0.0 _{dəy}		?]	
2. Relative Permeab	oility Para	meters					Reset Run	AR AT SLOW	BAST PL	AYER	וור
$k_{ra} = k_{ra0} \left(\frac{1 - S_g}{1 - S_{ra0}} \right)$	$\left(\frac{S_{ar}}{S_{ar}}\right)^m$, k	$k_{rg} = k_{rg0} \left(\frac{S_g}{1 - S} \right)$	$\left(\frac{-S_{gc}}{-S_{gr}}\right)^n$		Injection	Control: 2. Optim	nal constant-injection	rate 🔻	Result	Input parameters	E
Residual saturation of brine, S_a Critical gas saturation, S_{ac} =	r = 0.5	k _{ra0} = 1 k _{rg0} = 0.3	m =	3	1. Identical	constant-injection rat ection rate (kg/day)=	te to every well	⇒	Distribution - Well-bore pressure (MPa) Total injection rate (kg/day)	Maximum weil-bore pressure (MPa) Sweep efficiency	
3. Simulation Param	o.1	4. NPV Analys Want to conduct N	İS PV analysis?	Ves		OR			Radius of CO2 plume (m)		
Total injection time (day) = Want to change time? Want to run Monte-Carlo simulation?	1000 Yes Yes	Tax Credit [\$/tonne] Drilling Cost [Million Maintenance Cost [H Monitoring Cost [Kild	= 5/well] = (ilo\$/well/year] = (\$/year/km2] = (\$\text{NPV} Result: NPV	40 1 20 20 (analysis	2. Optimal	constant-injection rat esesure limit, delta_P	te for given press (MPa)=		Distribution - Injection rates (kg/day) Total injection rate (kg/day) Distribution - Radius of CO2 plume (m)	Sweep efficiency	

Supplemented with help and user manual.

1 well	*								
4 well	د د	k k	*						
16 well	* * *	* * *	* * *	* * *					

- Simulations done automatically for 1 well up to 99 wells
- Open boundary and closed boundary

BUREAU OF

Economic

• Finding the optimized rate to maximize storage capacity

C12Energy independently beta tested and verified the outputs of EASiTool.

Gulf Coast

Carbon

Center

💋 GoldSim Player - Version5_8	
10 Sensitivity analysis? Pressure (MPa) = 10 Sensitivity analysis? Temperature (C) = 40 Sensitivity analysis? Salinity of brine (mol/kg) = 0.5 Sensitivity analysis? Thickness of a reservoir (m) = 50 Sensitivity analysis? Porosity = 0.2 Sensitivity analysis? Permeability (mD) = 100 V Sensitivity analysis?	Length of a reservoir (m) - shorter side = 10000 1 Storage reservoir Reservoir boundary: Closed • Open boundary 150
2. Relative Permeability Parameters $k_{ra} = k_{ra0} \left(\frac{1 - S_g - S_{ar}}{1 - S_{gc} - S_{ar}} \right)^m$, $k_{rg} = k_{rg0} \left(\frac{S_g - S_{gc}}{1 - S_{gc} - S_{ar}} \right)^n$ Residual saturation of brine, S_{ar} = 0.5 Critical gas saturation, S_{go} = 0.1 3. Simulation Parameters Well-bore radius (m) = 0.1	Injection Control: 2. Optimal constant-injection rate Result Imp GoldSim Run Controller GoldSim Run Controller Imp Imp 3 Imperiation rate 00.04+32 Imp Imp 3 Imperiation rate Imp Imp Imp 0 Imp Imp Imp Imp Imp 0 Imp Imp Imp Imp Imp
Total injection time (day) = 1000 Drilling Cost [Million\$/well] = Want to change time? Yes Maintenance Cost [Killo\$/well/year] = Want to run Monte-Carlo Yes Monitoring Cost [Killo\$/year/km2] = simulation? Yes Monitoring Cost [Killo\$/year/km2] =	1 2. Optimal constant-injection rate for given pressure limit 20 Presesure limit, delta_P (MPa)= 5.8 NPV analysis Distribution - Radius of CO2 plume (m)

BUREAU OF

Economic

🛄 Array View	w: NPV_Estim	ate		🛄 Array Viev	w: NPV_Estim	ate			
📭 🗎 🗈	🖨 A 🔺	A 🖆 🔛	1 🜩	📭 🗎 🗈	🖨 A [*] A [*]	A 🖆 🖄	2 🌩		
	1	2			1	2			A
1	1	72.994		1	1	54.511			
2	2	115.16		2	2	92.48			
3	3	142.5		3	3	120.11			
4	4	156.44		4	4	136.31			
5	6	177.53		5	6	161.65]		
6	8	190.59		6	8	178.52]		
7	12	200.4		7	12	193.65]		
8	15	205.28		8	15	201.53]		=
9	20	206.45		9	20	205.9	Ilncortair	ty Analysis	-
10	24	206.91		10	24	208.43	Uncertai	ity Analysis	
11	30	204.02		11	30	207.53]		
12	35	201.69		12	35	206.63]		
13	42	196.3		13	42	202.57]		
14	48	191.9		14	48	199.21]		
15	56	184.66		15	56	192.9			
16	63	178.55		16	63	187.57			
17	72	169.76		17	72	179.46			
18	80	162.16		18	80	172.46			
19	90	151.96		19	90	162.79			T
•				•					E. ▲

2014 IEAGHG Summer School in Austin

EASiTool website stats: 58 downloads over passed 3 months Training workshop for a delegation from Botswana

Summary

- First version of software released on 4/30/2014.
- EASiTool is using analytical models which consider (CO₂ dissolution, brine evaporation, relative permeability, multi-well injection, ...)
- EASiTool calculates the storage capacity fast and reliable (minutes to run tens of simulations).
- EASiTool runs for open and closed boundary conditions.
- EASiTool carries out uncertainty analysis.

Future Plans

- Currently under Task 3 the main focus is to define fracture pressure.
 Consider stress-pore pressure coupling
 Consider thermal stress effects
- Verification (Numerical simulations, independent users)
- Further develop user interface

Appendix

- Organization Chart
- Gantt Chart
- Bibliography
- Extra Slides

Organization Chart

Organization Chart

Project PI: Seyyed A. Hosseini								
Task 1 Project Management and Planning	Task 2 Development of Analytical Solutions for Pressure Buildup	Task 3 Rock Geomechanics Impact on Pressure Buildup and Capacity Estimation	Task 4Brine-ManagementImpact on CO2Injectivity and StorageCapacity					
Task Leader/Backup Nicot/Hosseini	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun					
Task 1 Team Nicot/Hosseini/ Young/Hovorka	Task 2 Team Subtask 2.1 Hosseini/Sun/ Postdoc/s Subtask 2.2 Hosseini/Sun/C12 Energy Subtask 2.3 Sun/Hosseini Subtask 2.4 Sun/Hosseini	Task 3 Team Subtask 3.1 Hosseini/Sun/ Postdoc/s Subtask 3.2 Hosseini/Sun/ Postdoc/s Subtask 3.3 Sun/Hosseini Subtask 3.4 Hosseini/Sun Subtask 3.5 Sun/Hosseini Subtask 3.6 Sun/Hosseini	Task 4 Team Subtask 4.1 Hosseini/Sun/ Postdoc/s Subtask 4.2 Sun/Hosseini/ Postdoc/s Subtask 4.3 Sun/Hosseini Subtask 4.4 Sun/Hosseini					

Gantt Chart

Bibliography

- Journals

- Kim, S., Hosseini, S.A, 2013, Above-zone pressure monitoring and geomechanical analyses for a field-scale CO₂ injection project in Cranfield, MS, Greenhouse Gases: Science and Technology, 4 (1), 81-98, DOI: 10.1002/ghg.1388
- Conferences
 - Kim, Seunghee, Hosseini, S. A., and Hovorka, S. D., 2013, Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in relevance to CO₂ Geological Storage: Proceedings of the 2013 COMSOL Conference, Boston, Massachusetts.
 - Kim, Seunghee, Hosseini, S. A., 2014, Optimization of Injection Rates for Geological CO₂ Storage in Brine Formations, 13th Annual Conference on Carbon Capture Utilization & Storage.
 - Kim, Seunghee, Hosseini, S. A., 2014, Effect of Pore Pressure/Stress Coupling on Geological CO₂ Storage, 13th Annual Conference on Carbon Capture Utilization & Storage.
 - Two papers to be presented at GHGT12 in Austin.

Capacity Estimation Methods

	DOE/NETL	EERC	CSLF	USGS	EASiTool	Numerical Simulators
Reservoir scale	Yes	Yes	Yes	Yes	Yes	Yes
Accuracy	Low	Medium	Low	Low	Medium/High	High
Boundary conditions	No	No	No	No	Yes	Yes
Rock geomechanics	No	No	No	No	Yes	Yes
Brine management	No	No	No	No	Yes	Yes
Required expertise	Low	Low	Low	Low	Low	High
Cost of use	Low	Low	Low	Low	Low	High
Speed	High	High	High	High	High	Low
Dynamic	No	No	No	No	Yes	Yes
Uncertainty quantification	No	No	No	Simple	Yes	Yes

Verification - 24 wells - optimized injection rate

1,000

-1,000

-3,000

-5,000

-7,000

-9,000

-11,000

Pressure (Mpa)	10
Temperature (C)	40
Salinity	0
Reservoir	Rectangle
Shorter side (m)	10000
Longer side (m)	15000
Boundary condition	Infinite, closed
Thickness of a reservoir (m)	50
Porosity	0.2
Total time (day)	1000
Residual saturation of brine	0.5
Critical gas saturation	0.1
End-point relative permeability of brine	1
End-point relative permeability of CO2	0.3
Power-law exponent (brine)	3
Power-law exponent (CO2)	3
Pressure increase limit, ∆P (Mpa)	5.8
Mole fraction of CO2 (in water)	0.0217568
Mole fraction of H2O (in CO2)	0.0040998
Density of CO2 (kg/m^3)	607.6
Compressibility of rock (1/Pa)	5*10^-10
Compressibility of gas (1/Pa)	1.87*10^-8
Compressibility of brine (1/Pa)	4.27*10^-10
Permeability (mD)	100
Well bore radius (m)	0.1

	Pressure (kPa) 2000-01-01 K layer: 1	
0	1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 11,000 13,000 15,000	1,000
		0-
	°Well-Inj1 °Well-Inj2 °Well-Inj3 °Well-Inj4 °Well-Inj5 °Well-Inj6	-2,000
	°Well-Inj7 °Well-Inj8 °Well-Inj9 °Well-Inj10 °Well-Inj11 °Well-Inj12	-4,000
	° Well-Inj13 ° Well-Inj14 ° Well-Inj15 ° Well-Inj16 ° Well-Inj17 ° Well-Inj18	-6,000
	°Well-Inj19 °Well-Inj20 °Well-Inj21 °Well-Inj22 °Well-Inj23 °Well-Inj24	-8,000
	0.00 1.00 2.00 miles 0.00 1.50 3.00 km	-10,000
0	1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 11,000 13,000 15,000	_

Verification – 24 wells – open

	Flow rates	of 24 well	s (ton/da	y)		
)()U[](];	1152.2	831	734.16	734.16	831	1152.2
	874.04	528.18	431.65	431.65	528.18	874.04
	874.04	528.18	431.65	431.65	528.18	874.04
	1152.2	831	734.16	734.16	831	1152.2

Total injection in 1000 days: 18.20 million tone

Verification – 24 wells – closed Flow rates of 24 wells (ton/day) 394.65 288 255 boundary 255.07 288 394.65 302.79 187.24 154.05

154.05

187.24

302.79

Optimal constant-injection rate

24 wells rate distribution

Analytical model

Radial distance from injection well