Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO₂

Project Number 90210 Robert Dilmore NETL ORD, Predictive Geosciences Division

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 12-14, 2014

Presentation Outline

- Benefits to Program
- Project Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary

Technical Scope

Shales as Seals

Shales as Storage Reservoirs

Sources: HF illustration from National Energy Technology Laboratory (NETL), 2011), Micro CT images by Rebecca Rodriguez, ORISE; Shale image from Reference: Lacazette, A. and Engelder, T. (1992) Fluid-driven cyclic propagation of a joint in the Ithaca Siltstone, Appalachian Basin, New York: p. 297 - 323 in B. Evans and T.-F. Wong (editors): Fault Mechanics and Transport Properties of Rocks; a festschrift in honor of W. F. Brace: Academic Press, San Diego.; NETL Carbon Storage Atlas IV (2012)

Benefit to the Program

- Carbon Storage Program Goals Addressed:
 - Support industry's ability to predict CO₂ storage capacity in (*unconventional*) geologic formations to within ± 30 percent
 - Ensuring 99 percent storage permanence.
- Project Benefits:
 - Improve understanding of injection/storage performance of unconventional formations
 - Inform efficiency estimation for resource assessment
 - Insights feeding to seal characterization in integrated assessment of risk

Project Overview: Goals and Objectives

- Project Objectives
 - Evaluate matrix response to CO₂ exposure (sorption, swelling/shrinkage, geochemical interactions)
 - Characterize effective permeability and porosity of shale to CO₂
 - Experimental and simulation-based performance of CO₂ storage in/transport through shale with natural and engineered fractures
 - Reduced order characterization to improve resource estimation and quantitative risk assessment of geologic CO₂ storage

Science Base Feeding to Higher-Level Assessments

CO₂ and CH₄ Sorption capacity as function of %TOC (single-fluid isotherms)

Nuttall, Brandon; Cortland F. Eble; James A. Drahovzal, and Mark Bustin, *Analysis of Devonian Black Shales for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production*, Report DE-FC26-02NT41442 prepared by the Kentucky Geological Survey, University of Kentucky, for the U.S. Department of Energy, National Energy Technology Laboratory, December 30, 2005.

CO₂ Sorption Mechanisms: Fourier Transform-Infrared Spectroscopy (FT-IR)* 15 min CO₂ exposure at 40°C, 0-800 psi

Physically Sorbed CO₂ IR Peaks: 2350-2330 cm⁻¹

CO₂ Sorption on Shale Samples

FT-IR Data:

Area of 2343 cm⁻¹ CO₂ Sorption Peaks

FT-IR Data:

Area of 2331 cm⁻¹ CO₂ Sorption Peaks*

to obtain reliable area measurements

FT-IR trends compliment results of CO₂ isotherm measurements

Geochemical Model Sensitivity and Caprock Interface

Study Problem: Geochemical calculations rely on uncertain thermodynamic & kinetic databases

Goal: Characterize the mineral precipitation and dissolution processes that are important at brine/aquifer/caprock interfaces.

Finding: The precipitation and dissolution processes for minerals Chlorite, and carbonates Cc, Dol, Ank contribute to autosealing at the brine/aquifer/caprock interfaces.

Source: Balashov, V. N. Brantley, S. L. Guthrie, G. D. Lopano, C. L Hakala, and J. A. Impact of geochemical kinetics at the reservoir/ shale interface on long term CO2 storage. Goldschmidt Conference June 8 – 13, 2014

Steady-State Permeameter

Capable of reproducing in-situ net stress, and measuring gas flow under partial liquid saturation

Image from: Kashiar Aminian; Discussion of PPAL capability at: SPE/DOE 11765, Symposium on Low Permeability Gas Reservoirs, Denver, CO, March 13-16, 1983 Soeder, D. J., 1988, Porosity and permeability of eastern Devonian gas shale: SPE Formation Evaluation, Vol. 3, No. 2, p. 116-124, DOI 10.2118/15213-PA.

Coupling Mechanical Changes of Fractures to Hydraulic Changes

Cycling of confining pressure causes fracture asperities to break down, reducing effective fracture aperture

Source: Crandall, D. Gill, M., McIntyre, D.L., and Bromhal, G.S. (2013) **Coupling Mechanical Changes of a Fracture to Hydraulic Changes** SPE 165695-MS. prepared for SPE Eastern Regional Meeting held in Pittsburgh, Pennsylvania, USA, 20–22 August 2013. © 2013, SPE

Modeling CO₂ Flow in Fractured Geologic Media

FRACGEN stochastically generates fracture networks

Legend window Image: Construction Oriskany Sandstone Well Test (Use w/ Orisk5.flo) 1633.3 - 1661.0

fracture networks

NFFLOW models flow in discrete

Reservoir Dimensions 1700.000 x 1500.000 x 190.000

CO₂ Storage in Depleted Shale Gas Formations

Goal: Develop a robust characterization of site-scale CO₂ storage and EGR potential of gas-bearing shale formations

Scenario: Dry gas window, Marcellus, SW PA, Depth of 6,700 ft (~ 2,000 m), gross interval thickness of 120 ft (37 m), 145°F (63°C), Initial pressure 4,000 psi (27.6 MPa), matrix permeability 0.1 -1 (μD)

Sensitivity of CO₂ storage/EGR performance to:

- Fracture network characteristics
- Matrix CO₂ and CH₄ sorption characteristics
- Injector/producer distance
- Injection pressure
- Stress-dependent matrix perm.

Representing Fracture Networks

Discrete Fracture Modeling coupled with conventional reservoir simulation

Modified dual porosity, multiphase, compositional, multidimensional flow model

Semi-stochastic fracture network and flow modeling

Single Lateral CO₂ Storage Scenario

Scenario: Constant pressure at 5000 psi, single lateral

Uncertain Parameters:

 h_{net} , Φ_{matrix} , $\Phi_{fracture}$, k_{matrix} , $k_{fracture}$, fracture spacing, Langmuir constants

MC with 1000 realizations

Cum. CH₄ Produced

	P ₉₀	P ₅₀	P ₁₀
OGIP (BSCF)	111	138	165
CH ₄ Production over 30 Years (BSCF)	20.1	23.7	27.4
CO ₂ Stored after 30 Years (BSCF)	15.3	16.9	18.5

CO₂ Storage and Enhanced Gas Recovery Scenario

- CO₂ Injection for EGR not expected to start until primary production complete (nominally 40 years)
- Models predict EGR recovery (technical) potential between 0 and • 11% (above primary production)
- Time to breakthrough of 10% mole fraction in produced stream decreases significantly as SRV overlap of adjacent laterals increases CWGPT_1:WVU2-1 vs.TIME (Base Case3

6 of Increasing CH4 production: +7.759

Cum.CH₄ (Mscf)-Base Case

CO2 injection rate(Mscf/d)-Case2

3000

Sources: Kalantari-dahaghi, A, Mohaghegh, S. D. CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation Study. Manuscript #P317871, 2013 AICHE Carbon Management Technology Conference. Alexandria, Virginia, 21-23 October, 2013; Industrial Carbon Management Initiative (ICMI) Modeling Report

Flux through Fractured Seal ROM NSEALR

- Assumes thin, relatively impermeable, fractured rock unit, initially saturated with a saline water.
- Two-phase, relative permeability approach and 1-D Darcy flow of carbon dioxide through the horizon in the vertical direction
- User defined or stochastically varying permeability, porosity, seal thickness
- Correction for in situ stress on aperture values generated by the fractured rock model, including shear stress options

Accomplishments to Date

- Well/pad-scale characterization of CO₂ storage and EGR performance in depleted shale gas formations
- Preliminary experimental characterization of:
 - Shale sorption characteristics
 - Mechanisms of CO₂/shale interactions
 - Matrix permeability
 - Fracture flow
 - Pore imaging
- Reduced physics model characterizing flux through fractured seal
- Contributing to methodology for CO₂ storage in shale

Summary

– Future Plans

- Understanding shale pore type and structure
- Flow through nanopores on molecular scale
- Importance of pore effects at core-scale
- Matrix swelling/shrinkage effects
- Oil wet versus water wet (black shale vs. gray)
- Liquid and condensate reservoirs
- Simulation refinement and validation

Organization Chart

- NETL Office of Research & Development
 - Predictive Geosciences Division
 - Engineered Natural Systems Division
 - Material Characterization Division
- URS Corp.
- West Virginia University, Penn State University, Carnegie Mellon University

Gantt Chart

Carbon Storage U.S. DEPARTMENT OF FWP Number Car Stor_FY14 Schedule and Milestones					
Task No.	Activity Name (Task/Sub-task)	Start	Finish	FY14 Q1 Q2 Q3 Q4 O N D J F M A M J J A S	
1.0	Project Management	10/1/13	9/30/14		
1.1	Project Management	10/1/13	9/30/14		
2.0	Reservoir and Seal Performance	10/1/13	9/30/14	♦ M1.14.2.A	
2.1	Impact of CO ₂ -Brine-Rock Chemistry on Storage Formations and Seals	10/1/13	9/30/14		
2.2	Impact of Microbial Processes on Storage Formations and Seals	10/1/13	9/30/14		
2.3	Impact of CO_2 on Shale Formations as Seals	10/1/13	9/30/14		
2.4	Characterization of Reservoir and Seal Material Performance	10/1/13	9/30/14		
2.5	Understanding of Multiphase Flow for Improved Injectivity and Trapping	10/1/13	9/30/14		
2.6	Geochemical Model Sensitivity at Caprock Interfaces	10/1/13	9/30/14		
3.0	Monitoring Groundwater Impacts	10/1/13	9/30/14	♦ M1.14.3.A	
3.1	Natural Geochemical Signals for Monitoring Groundwater Impacts	10/1/13	9/30/14		
4.0	Resource Assessments and Geospatial Resource	10/1/13	9/30/14	♦ M1.14.4.A	
4.1	Resource Assessments	10/1/13	9/30/14		
4.2	Geospatial Data Management	10/1/13	9/30/14		
5.0	Monitoring CO ₂ and Pressure Plume	10/1/13	9/30/14	M1.14.5.A 💠	
5.1	Development of Technology to Monitor CO_2 and Pressure Plume	10/1/13	9/30/14		
6.0	Catalytic Conversion of CO_2 to Industrial Chemicals	10/1/13	9/30/14	M1.14.6.A 🔷	
6.1	Catalytic Conversion of CO_2 to Industrial Chemicals	10/1/13	9/30/14		
	♦ Milestone	•	•	Page 1 of 1	

22

Coupled Fluid Flow and Geomechanical Modelling

Ground Deformation

Maximum computed surface displacements are about 0.07 ft (21.3 mm).
Can monitor with tiltmeter array

Vertical displacements above injection zone

Related Studies

- Nuttall et al., (2005) Kentucky Geologic Survey
 - KGS developed the first volumetric estimates of CO₂ storage potential in the Carbonaceous (black) Devonian gas shales that underlie Kentucky, estimating that as much as 28 Gt could be stored there.
- Advanced Resources International (2013)
 - Basin-level assessment of CO2 and EGR potential, reservoir simulation, novel monitoring, techno-economic assessment
- Tao & Clarens (2013) (U. Virginia)
 - Estimating CO₂ storage in Marcellus shale
- Zobak et al. (Stanford)
 - evaluate physical and chemical interactions between CO₂ and shale, imaging of fluid migration in shale
- Ripepi et al. (Virginia Tech)
 - Simulation and field demonstration in Central Appalachia

(2) Experimental Analysis of CO_2 Storage in Organic-rich Shale

Purpose:

Examine & quantify CO_2 sorption capacity of *individual* clay standards & shale samples Determine relative roles of kerogen, clay, & clay type in CO_2 storage potential of shales

Analytical work conducted on shale samples and clay standards									
Sample	Description	He	E-SEM	FT-IR	FT-IR	CO ₂ Adsorption	тос	XRD	
Shale Samples		Pycnometry	(std)	(Т&Р)	Isotherms				
MS-1	Marcellus: Oatka Creek	Y	Y	Y	Y	Y	Y	Y	
MS-4	Marcellus: Union Springs	Y	Y	Y	Y	Y	Y	Y	
US-1	Utica: Flat Creek	Y	Y	Y	Y	Y	Y	Y	
Clay Standards*						-			
STx-1	Ca-Smectite	Y	-	Y	Y	Y	-	-	
IMt-2	Illite	Y	-	Y	Y	Y	-	-	
KGa-1b	Kaolinite	Y	-	Y	Y	Y	-	-	
ISCz-1	Illite-Smectite	Y	-	Y	Y	Y	-	-	
Talc	control	-	-	Y	Y	-	-	-	

Analytical work conducted on shale samples and clay standards

*All clays are natural standards obtained from the Clay Mineral Society

"Y" indicates the procedure has been conducted on the sample

Organic-rich Shale Outcrop Samples

Marcellus - Union Springs Marcellus - Oatka Creek Utica - *Flat Creek* MS-1 US-1 carbonate guartz quartz

TOC = 9.20 wt. % (σ 0.60) **TOC = 6.51 wt. %** (σ 0.22) **TOC = 0.45 wt. %** (σ 0.17)

Quartz + Clay (e.g. illite, chlorite, kaolinite) + Carbonate + Pyrite + Kerogen ± Feldspar

Key Findings: CO₂ Storage in Shale

- Without HF and natural gas production, CO₂ can not be injected
- Storage predominantly as free-phase CO₂ in fractures – low permeability matrix limits amount of matrix available for sorption
- Favorable assumptions about Langmuir characteristics results in only a small increase in storage (sorbed phase)
- Storage ~ 50,000 tonnes per fractured stage
- CO2 storage is not much greater in injector/producer scenario, and can be less in cases with significantly overlapping SRV

Potential Fluid Leakage Pathways from Unconventional HC Formations (US EPA, 2012)

Leakage through the annuli of the vertical drilling well

Leakage through a natural fault

Leakage through an abandoned well

<u>Representation of Horizontal Wells with Transvers Hydraulic Fractures</u> <u>Evaluating the potential viability of an Equivalency Network</u>

PENN<u>STATE.</u>

NETL ORD Multi-Scale CT Flow and Imaging Facilities

Micro CT Scanner

- Resolution 10⁻⁶ to 10⁻⁵ m
- Pore scale

Industrial CT Scanner

- 10⁻⁶ to 10⁻³ m
- Pore & core scale
- Pressure & flow controls

Medical CT Scanner

- -10⁻⁴ to 10⁻² m
- Core scale
- P, T, and flow controls

Precision Petrophysical Analysis Laboratory

Effective porosity and permeability of shale to CO_2/CH_4 over range of effective stress, and characterization of hysteresis effects

- Steady-state flow measurement, research quality data
- Capable of running different gases under different pressures, including nitrogen, methane and carbon dioxide.
- Capable of reproducing in-situ net stress, and measuring gas flow under partial liquid saturation.
- Can also measure pore volume to gas, adsorption isotherms and PV compressibility using N₂, CH₄ or CO₂
- Uses stable gas pressure as a reference for flow measurement
 - Temperature controlled
 - Stable to one part in 500,000
 - Target flow measurement is 10⁻⁶ standard cm³ per second

Linked SRM-Economic Screening Tool Modeling Approach

Temperature

Source: *The Properties of Petroleum Fluids*, second edition, by William D. McCain Jr. Copyright Pennwell Books, 1990

CO₂–Clay Interactions: FT-IR Spectroscopy*:

Chemically Sorbed CO₂ IR Peaks: 1400, 830, 720 cm⁻¹

CO₂–Shale Interactions: FT-IR Spectroscopy*:

No changes observed in IR spectra with addition of CO₂ and pressure

CO₂–Clay Interactions: FT-IR Spectroscopy*:

Chemically Sorbed CO₂ IR Peaks: 1400, 830, 720 cm⁻¹

CO₂ Sorption on Shale Samples

CO₂ Sorption Isotherms:

All Isotherm Data: 0-220 psi at -25, -15 & 0°C

FT-IR Data:

Area of 2331 cm⁻¹ CO₂ Sorption Peaks*

 $MS\text{-}4 > US\text{-}1 \geq MS\text{-}1$

*2343 cm⁻¹ peak not strong enough to obtain reliable area measurements

TOC-content (wt. %): MS-4 (9.2) > MS-1 (6.5) > US-1 (0.5)

CO₂ Sorption on Clay Standards

CO₂ Sorption Isotherms:

All Isotherm Data: 0-220 psi at -25, -15 & 0°C

FT-IR Data:

Area of 2343 cm⁻¹ CO₂ Sorption Peaks

FT-IR trends compliment results of CO_2 isotherm measurements

Experimental Analysis of CO₂ Storage in Organic-rich Shale

Results:

(1). Smectite > Illite-Smecite > MS-4 \ge Illite \ge Kaolinite > US-1 \ge MS-1

Summary of CO₂ Sorption Isotherm Data at 0.8 P/P₀ & -25°C

Sample:	Smectite	Illite- Smectite	MS-4	Illite	Kaolinite	US-1	MS-1
cm ³ /g	36.5	18.5	7.2	5.7	5.6	1.7	1.5
error +/-	1.3	0.5	0.5	0.6	1.0	0.6	0.6

(2). Two CO₂ sorption peaks observed at 2343 and 2331cm⁻¹ on IR spectra of the shale samples (possibly also clays)

(3). No changes were observed in the IR spectra of clays or shales after 15 min of exposure to CO_2 at pressures between 0-800 psi and 40°C.

Interpretations:

(1). Shale formations with high smectite, illite-smectite, and/or high TOCcontent may have high CO₂ storage

> potential (e.g. Busch et al., 2008; Busch et al., 2009; Ross and Bustin, 2009)

- (2). There may be two CO₂ sorption sites in shales & clays: in the interlayer* of clay structures & in the interpore space of minerals & kerogen. (**e.g. Rother et al.*, 2012; Geisting et al., 2012; Loring et al., 2012)
- (3). At experimental conditions, exposure to CO₂ does not induce chemical changes in clays & shales of these compositions

CO₂ Storage in Depleted Shale

- Acquire conduction and all about the sequence of the sequenc
- Use that set of data to develop population statistics
- Develop a history-matched model of shale gas production (29 month production history) using a conventional reservoir model
- Project forward to economic limit before initiating CO₂ injection
- Develop a surrogate reservoir model based on the history matched model to predict wellpad performance under CO₂ loading

CO₂ and CH₄ Sorption capacity as function of %TOC (single-fluid isotherms)

11