Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration

DE FE0004542

Larry Murdoch, Clemson University

Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 13, 2014

Presentation Outline

- Preliminaries
- Current project status
- Plans

Improve characterization

Anticipate problems

UNIVERSI

Benefit to the Program

Measuring and interpreting casing deformation should improve the ability to characterize flow and geomechanical properties of injection zones and confining units, as well as help identify problems with wellbore integrity that could lead to leakage.

Program Goal:

Develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent
Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones

Project Overview: Goals and Objectives

Evaluate feasibility of using wellbore deformation as a diagnostic tool.

- 1. What deformation should be expected?
 - FEM analyses, Task 2
- 2. Can that deformation be measured?
 - Instrumentation assessment, Task 4
- 3. Can the measurements be interpreted?
 - Inverse analyses, Task 3

What can be measured? Task 4

Goal: Assess capabilities to measure deformation (components, magnitudes, rates) of wellbores under field conditions.

UNIVERSIT

Baker WIRE

- Multicomponent
- ~1 µe

Casing

Cement

Casing

UNIVERSIT

Cement

- Optical
- Part of casing

ENERGY

Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 13 Aug. 2014

BAKER HUGHES

Strain Measurement Overview

Reference Values and Surface Methods

Based on Plate Boundary Observatory Report [1999]

UNIVERSIT

Strain Measurement Overview

Borehole methods

Based on Plate Boundary Observatory Report [1999]

UNIVERSI

What deformation is expected? Task 2

Goal: characterize deformation in the vicinity of wellbores used for storage.

Injection, 1MPa, 6 lps ~100gpm, Axial symmetry **Aquifer**: k: 10⁻¹³m², b: 100m, E: 15GPa , R = 30km **Confining** : k: 10⁻¹⁶m², b: 1000 m; E: 15GPa **Casing**: k: 1nd; 8-inch, 8mm wall, E: 200GPa **Screen**: k: 10⁻¹³m²; 8-inch, 8mm wall, E: 200GPa

HUGHES

UNIVERSIT

Response in Injection Well

K

BAKER HUGHES

ENERGY

UNIVERSITY

Wellbore Integrity

Increase k Increase E

Constant P injection, 1MPa Confining: k: 10µD

UNIVERSITY

BAKER HUGHES

Magnitudes and Rates of Strain

U.S. DEPARTMENT OF

UNIVERSITY

Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 13 Aug. 2014

BAKER HUGHES

Magnitudes and Rates of Strain

U.S. DEPARTMENT OF

UNIVERSITY

BAKER HUGHES

Based on Plate Boundary Observatory Report [1999]

UNIVERSITY

14

ENERG

How can measurements be interpreted? Task 3:

Goals: a.) Quantify ability of data to constrain model parameters, b.) assess how uncertainty in parameters translates into risks; c.) optimize methods for efficient large-scale reservoir characterization

UNIVERSI

Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 13 Aug. 2014

16

BAKER HUGHES

ENERG

UNIVERSI

Data Location, Measurement Type, Heterogeneity

Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 13 Aug. 2014

BAKER

HUGHES

ENERGY

UNIVERSITY

Data Location, Measurement Type, Heterogeneity

Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 13 Aug. 2014

18

HUGHES

ENERG

UNIVERSITY

Data Location, Measurement Type, Heterogeneity

19

HUGHES

ENERG

UNIVERSIT

Data Location, Measurement Type, Heterogeneity

UNIVERSIT

HUGHES

Project Review Meeting, 13 Aug. 2014

Status of Inverse Analyses

	2D	3D	Interpretation
Measurement Type			
Pressure vs. Geomech	X		Geomechanical data constrains parameters better than pressure alone, combination is best
Strain versus tilt	Х		Strain data constrains better than tilt meter, combination is best
Data Location			
Reservoir	Х		Instruments in reservoir can constrain parameters
Caprock	Х		Instruments in cap rock can constrain parameters
Well Bore	Х		Forward model ready
Heterogeneity			
Radial Contact	Х		Geometry and physical parameters constrained
Compartmental Fault	Х		Can identify model error, investigating non-uniqueness of parameters
Leaky Fault	Х		Investigating non-uniqueness of parameters
Channel Hetergoeneity	Х		Geometry and physical parameters constrained
Channel Heterogeneity		Х	Forward model ready
Stresses on Fault		Х	Forward model under development

21

Accomplishments to Date

- Measurement
 - Instruments to measure axial, radial, 3D
 - Resolution/Logistics: $1 \ \mu\epsilon \rightarrow 0.001 \ \mu\epsilon$
 - Demonstrated in the field
- Analyses
 - Benchmarks, Verification, 2D axial, 3D
 - Patterns of deformation; Magnitudes: ~ $1\mu m$, strain: ~ $1\mu\epsilon$, strain rate: measurable
 - Sensitivity, Uncertainty analysis; factor of 2 ~ 3
- Interpretation
 - MCMC 1 chain, Analytical, numerical
 - MCMC multi-chain, HPC
 - MCMC/Multiobjective genetic algorithm→ hybrid
 - Parameters constrained with geomechanical data
 - Parameters constrained with shallow cap rock observations
 - Heterogeneities identified, parameters and geometry constrained

Summary

– Key Findings

- Expect μ m/ $\mu\epsilon$ -scale displacements
- Possible to measure magnitudes and rates
- Interpretation appears feasible
 - Remote sensing of change in pressure
 - Formation properties, heterogeneities, geomechanics
 - Leakage, casing integrity
- Future Plans
 - Forward analyses; reservoir structure, casing-cement-formation
 - Instrument evaluation; multi-axis strain
 - Hybrid optimization; wellbore, heterogeneities, non-uniqueness, real field data

Radial Displacement

Open Hole and Cased Hole

UNIVERSI

What deformation is expected? Task 2

Goal: characterize deformation in the vicinity of wellbores used for sequestration.

- Benchmark simulations
 - FLAC, Abaqus, Comsol, GMI Wellcheck...

UNIVERSI

- Response Scenarios
 - Reservoir types
 - Heterogeneities
 - Wellbore completion

Data Location, Measurement Type, Heterogeneity

U.S. DEPARTMENT OF

UNIVERSITY

ENERGY

BAKER

HUGHES

27

Data Location, Measurement Type, Heterogeneity

28

HUGHES

ENERG

UNIVERSIT