

SECARB's Early Test at Cranfield, Mississippi

Ramón Treviño Seyyed Hosseini Katherine Romanak Tip Meckel (Susan Hovorka)

Gulf Coast Carbon Center Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

ERT Image of CO₂ plume: X Yang LLNL

Presentation Outline

- SECARB Early Test Goals
- Site Characterization
- Monitoring and modeling response to injection in the deep subsurface
- Monitoring the shallow subsurface what would response to leakage or migration look like?
- Remaining work

Presentation Outline

- SECARB Early Test Goals
- Site Characterization
- Monitoring and modeling response to injection in the deep subsurface
- Monitoring the shallow subsurface what would response to leakage or migration look like?
- Remaining work

Goal: Regional Carbon Sequestration Program goal: Improve prediction of storage capacities

Existing data on reservoir volumetrics Production history 37,590,000 Stock tank barrels oil 672,472,000 MSCU gas (Chevron, 1966))

7,754 acres x 90 ft net pay x 25.5% porosity (Chevron, 1966)

X E [pore volume occupancy (storage efficiency)] = Storage capacity

injection rate – limited by pressure response

Measure saturation during multiphase plume evolution Increase predictive capabilities by validating numerical models Observation: pore volume occupancy was rate and pressure dependent: not a single number

Goal: Regional Carbon Sequestration Partnership program goal: Evaluate protocols to demonstrate that CO₂ is retained

Presentation Outline

- SECARB Early Test Goals
- Site Characterization
- Monitoring and modeling response to injection in the deep subsurface
- Monitoring the shallow subsurface what would response to leakage or migration look like?
- Remaining work

Characterization

• Regional setting (Gulf Coast Wedge)

Location

 Tuscaloosa Formation - depositional system

• Confining system (overburden)

Gulf Coast Wedge

Galloway and others,2000

Location

Lower Tuscaloosa sand and conglomerate fluvial depositional environment

Amalgamated Fluvial Channels - Heterogeneity

Characterization of Overburden

Depth (ft)	Stratigraphic Unit	Hydrologic function		
°	Pleistocene-Holocene alluval sedimente and loess	1]
-1000	Miocene - Oligocene undivided		Fresh water	
-2000		Confining system		·
	Cockfeild Fm. Cock Mountain Formation			_
-3000	Sparta Formation			
-5000	Wilcox Group	Shallower production		
-6000				
-7000				
-8000	Midway- Navarro - Taylor	Multi-layer confining system		
-9000	Selma-Austin chalks			
	Eutaw-upper Tuscalloosa	Selected above-zone monitoring interval (AZ		(AZMI)
-10000	Middle Tuscaloosa Fm.			, ,
- 8	Lower Tuscaloosa Fm.			
-11000	Washita- Fredericksburg Groups	Bottom seal	Injection zone	
Sandstones Shale, some T Chak and marl				

13

Presentation Outline

- SECARB Early Test Goals
- Site Characterization
- Monitoring and modeling response to injection in the deep subsurface
- Monitoring the shallow subsurface what would response to leakage or migration look like?
- Remaining work

Monitoring response to injection in the deep subsurface

- ▲ Injector
- Producer
 (monitoring point)
- Observation Well
- RITE Microseismic

4-D seismic

Detailed Area Study (DAS)

Closely spaced well array to examine flow in complex reservoir

> Tuscaloosa D-E reservoir

Petrel model Tip Meckel Time-lapse cross well Schlumberger

LLNL Electrical Resistance Tomographychanges in response with saturation

F1 F2 F3

C. Carrigan, X Yang, LLNL D. LaBrecque Multi-Phase Technologies

CFU31F-3, 112 m away from injector SF6

Wellhead pressure indicating breakthrough

Seyyed Hosseini, BEG, Sandeep Verma Schlumberger

Pressure Monitoring in AZMI (Above zone monitoring interval)

Field Observation

(not scaled)

• COMSOL: simulation model

Matching pressure in AZMI

- 31 F2 Mon. Well: Pressure

- 31 F3 Mon. Well: Pressure

4 D seismic- Historic data history matching (1942-1967)

Ternary saturation map (1942)

Static and dynamic reservoir modeling for geological CO₂ sequestration at Cranfield, Mississippi, U.S.A.

Seyyed Abolfazl Hosseini^{a,} 📥 · 🖾, Hamidreza Lashgari^b, Jong W. Choi^a, Jean-Philippe Nicot^a, Jiemin Lu^a, Susan D. Hovorka^a

Ternary saturation map (1966)

Ternary saturation map (2007)

4-D Seismic difference (2010-2007)

Comparison to 4-D Seismic

Red and brown areas are high gas saturation regions

Presentation Outline

- SECARB Early Test Goals
- Site Characterization
- Monitoring and modeling response to injection in the deep subsurface
- Monitoring the shallow subsurface what would response to leakage or migration look like?
- Remaining work

Monitoring the shallow subsurface – what would response to leakage or migration look like?

Groundwater sampling point at each Injector
 Plugged and abandoned well
 Producer

Groundwater at the Cranfield Site: Sampling

- More than 12 field campaigns since 2008
- ~ 130 groundwater samples collected for chemical analysis of

Cations: Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Pb, Se, Zn Anions: F^- , Cl^- , $SO_4^{2^-}$, Br^- , NO_3^- , $PO_4^{3^-}$ TOC, TIC, pH, Alkalinity, VOC, δ C13

On-site: pH, temperature, alkalinity, water level

- ~10 samples for noble gases
- ~20 groundwater samples for dissolved CH₄

Groundwater at the Cranfield Site Sampling

- Results (prior to 2013) were summarized in the peer-reviewed paper
- No obvious change in groundwater chemistry was documented
- A step-wise working procedure for groundwater chemistry monitoring was proposed

QAe1189

Near-Surface Monitoring of Large-Volume CO₂ Injection at Cranfield: Early Field Test of SECARB Phase III

Changbing Yang, Katherine Romanak, and Susan Hovorka, University of Texas at Austin; Robert M. Holt, University of Mississippi; Jeff Lindner, Mississippi State University; and Ramon Trevino, University of Texas at Austin

Groundwater at the Cranfield Site Laboratory and Modelling

- Test response of groundwater chemistry to CO₂ leakage under laboratory conditions
 - Samples of sediments & groundwater collected
 - Bubbled with Ar for a week, then with CO₂ for ~half year

Pros: easy to do, little cost Cons: Non-realistic conditions

- Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content.
- Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification.
- Mobilization of trace metals was likely caused by mineral dissolution and release of surface complexes on clay mineral surfaces.

Inverse Modeling of Water-Rock-CO₂ Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites

 $Changbing \ Yang, \overset{*, \dagger}{} Zhenxue \ Dai, \overset{\pm}{} Katherine \ D. \ Romanak, \overset{\dagger}{} Susan \ D. \ Hovorka, \overset{\dagger}{} and \ Ramón \ H. \ Treviño^{\dagger}$

C. Yang, BEG

[†]Bureau of Economic Geology, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, United States [‡]Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

Groundwater at the Cranfield Site Single-Well Push-Pull Test

- Maximum concentrations of trace metals observed, such as As and Pb, are much less than the EPA contamination levels;
- Single well push-pull test appears to be a convenient field controlled-release test for assessing potential impacts of CO₂ leakage on drinking groundwater resources;

Results were summarized in the following

Single-well push-pull test for assessing potential impacts of CO₂ leakage on groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi

Changbing Yang^{a,*}, Patrick J. Mickler^a, Robert Reedy^a, Bridget R. Scanlon^a, Katherine D. Romanak^a, Jean-Philippe Nicot^a, Susan D. Hovorka^a, Ramon H. Trevino^a, Toti Larson^b

* Bureau of Economic Geology, The University of Texas at Austin, 10100 Burnet Road, Bidg 130, Austin, TX 78758, United States b Department of Geological Sciences, The University of Texas at Austin, 2275 Speedway Stop C9000, Austin, TX 78712-1722, United States

C. Yang, BEG

Testing well

0 0.5 1 2 kilometers

Groundwater at the Cranfield Site Numerical Modelling

 To assess sensitivity of geochemical parameters to CO₂ leakage

- Dissolved CO₂ & DIC in groundwater are most sensitive to CO₂ leakage
- Alkalinity is moderately sensitive, with the best response in the presence of carbonates in the aquifer sediments while groundwater pH shows best response in the aquifer sediments with little carbonates.
- For monitoring purpose, dissolved CO₂ & DIC are better indicators than pH and alkalinity in potable aquifers at geological carbon sequestration sites.

Groundwater at the Cranfield Site Next Steps

- Continue field campaigns for groundwater sampling
- Comprehensively analyze the field results on groundwater
- Compare our groundwater study at the Cranfield site to other sites, such as Weyburn,...
- Conduct reactive transport modeling
 - A preliminary model was completed in 2012 by QEA
 - The new model will focus on assessing
 - Impacts of natural groundwater flow on CO₂ leakage monitoring and change in groundwater quality
 - Heterogeneity
 - Monitoring well spacing

Airborne Magnetics for Characterization

Uninterpreted

Low : -218.3

Identification of infrastructure and geologic variatblity

Process-based Near-Surface Monitoring

"P-Site"

- Pad, Pit, Plants, P&A well
 - Localized monitoring beginning Sept 2009
- 13 multi-depth soil gas sampling stations - 5 m depth
- Localized soil gas anomaly at 1-03
 - $CH_4 \leq 50 vol. \%$
 - CO₂ \leq 45 vol. %

Process-Based Monitoring

- No need for years of background measurements.
- Promptly identifies leakage signal over background noise.
- Uses simple gas ratios (CO₂, CH₄, N₂, O₂)
- Can discern many CO₂ sources and sinks
 - Biologic respiration
 - CO₂ dissolution
 - Oxidation of CH₄ into CO₂ (Important at CCUS sites)
 - Influx air into sediments
 - CO₂ leakage

Process-Based Monitoring

- Developed and tested at Cranfield
- Validated at ZERT Controlled-Release Field Laboratory
- Applied at the Kerr Farm, Weyburn-Midale Oilfield where landowners claimed leakage
- Used at Otway Project, Australia, and considered for use at QUEST and Gorgon
- Being developed for use in offshore marine environments
- Goal to collaborate with Mesa Photonics to develop continuous monitoring capabilities for upscaling

Romanak et al., in press, *Process-based soil gas leakage* assessment at the Kerr Farm: comparison of results to leakage proxies at ZERT and Mt. Etna, in press International Journal Greenhouse Gas Control

"User-Friendly" Data Collection

- Simple data reduction
- No complex correlations with weather
- Graphical analysis can be done instantly
- Continuous monitoring capability will give instant realtime leakage detection information.

Katherine Romanak BEG

Near-Surface Leakage Assessment

Katherine Romanak BEG

Accomplishments & Key Findings

• Accomplishments to Date

- Monitored CO₂ injection since 2008
- Injection through 23 wells, cumulative volume over 8 million metric tons
- First US test of ERT for GS
- Time lapse plume imaging with cross well seismic, VSP, RST, and surface 3-D
- RITE microseismic no detect
- Groundwater sensitivity assessment push-pull
- Recognized by Carbon Sequestration Leadership Forum (CSLF) in 2010 for research contributions
- SIM-Seq inter-partnership model development test
- Knowledge sharing to Anthropogenic Test and other U.S./International CCS projects
- Key Findings
 - Dense data allows assessment of fluid flow measurement and modeling uncertainty
 - Above zone pressure monitoring method viability
 - Process-based method viable

Publications

www.gulfcoastcarbon.org bookshelf

Future plans

- Knowledge sharing
 - Technical, public and policy
 - Closure issues
 - CCUS concept
- Analysis of data collected
 - Joint/comparative inversions
 - Whole plume inventory
 - Uncertainty methodologies
 - Airborne geophysics
- Continued data collection
 - Continue groundwater and soil gas observation
 - Final use of DAS obs. wells
 - CO₂ geothermal test
 - Pressure interference for leakage detection

extras

Characterization Using 1943-1966 Production History

Theory - Poromechanics

- Conventional geomechanics: pore pressure \rightarrow stress \rightarrow strain \rightarrow displacement
 - Diffusive pressure disturbance penetrates 10-100m in 45 years (Segall, 1985)
- Poroelasticity: displacement \rightarrow strain \rightarrow stress \rightarrow pore pressure
 - Can be used to predict: 1) pore pressure change in AZMI zone, 2) displacement

Simulation Condition

Geometric configuration: 1) 2D plain strain, 2) Axisymmetric

Historic data history matching

- Operations started in 1943 until 1967 when field abandoned.
- This is important to understand the reservoir condition prior to CO₂ injection specially oil, water and gas saturations.
- Gas saturations could affect 4-D seismic.

4-D Seismic difference (2010-2007)

No Microseismic response measured

- During injection LBNL surface and downhole study
- Unsuccessful Pinnacle study
- WESTCARB/RITE Microseismic study
 - 12/2011-present
 - 6 3-C sensors in 300 ft boreholes
 - No detection
 - Wind, storm operational noise

Makiko Takagishi, RITE

微小振動観測点(全6点)

Extra slides and extra talking points on Goals FYI

Program Goals – Early Test (1)

Predict storage capacities within +/- 30%

- Well known based upon production history; Early Test advanced the understanding of efficiency of pore-volume occupancy (E factor).
- Success metrics: Measure saturation during multiphase plume evolution (completed). Increase predictive capabilities (modeling underway).

Evaluate protocols to demonstrate that 99% of CO₂ is retained

- Permanence of geologic system well understood prior to test because of retention of large volumes of hydrocarbon.
- Retention uncertainties lie in well performance. Early Test is evaluating methods to assess well performance.
- Success metrics: Measure changes above the injection zone along well, above zone monitoring interval (AZMI), and at surface (P-site) over long times (near complete)

Contribute to development of Best Practices Manuals

Early Test researchers have contributed to Best Practices Manuals on MVA, characterization, risk and modeling. Assistance has been provided on related protocol development, including IOGCC (U.S.), Pew Center accounting study (U.S.), IPAC-CO₂ (Canada), and CO₂-Care (EU), FutureGen 2 (PNNL) review, BGS, IEAGHG networks, and others.

Program Goals – Early Test (2)

Goal 1 - Injectivity and Capacity

- Advanced understanding of efficiency of pore-volume occupancy (E factor) by measuring saturation during multiphase plume evolution.
- Increase predictive capabilities through modeling.

Goal 2 - Storage Permanence

 Measure changes above the injection zone along well, above zone monitoring interval (AZMI), and at surface (P site) over long times (underway)

Goal 3 - Areal Extent of Plume and Potential Leakage Pathways

- Measured down-dip extent of plume via VSP and 4-D seismic to improve the uncertainty regarding the radial flow (down dip/out of pattern) in the 4-way closure.
- Increase predictive capabilities through modeling

Goal 4 -Risk Assessment

- Saline storage site is located in EOR field with operator owning CO₂.
- Completed certification framework assessment of leakage risk.
- Confirmed well performance as highest uncertainty and focus of monitoring research.
- Geomechanics and RITE/WESTCARB microsiesimic study

Program Goals – Early Test (3)

Goal 5 - Develop Best Practices

• Participated in developing BPMs for MVA, characterization, risk and reservoir modeling.

Goal 6 - Public Outreach and Education

- On-site outreach handled by Landmen.
- SSEB and Early Team focus on O&E in public and technical arenas.
- Hosted site visits, responses to local and trade media, Fact Sheets, and website postings of project information.

Goal 7 - Improvement of Permitting Requirements

- Permits obtained by site operator.
- Project team focus is on development of regulatory framework for GHG.

• Provided experience with monitoring instruments and well performance to decision makers.