Inexpensive Monitoring and Uncertainty Assessment of CO₂ Plume Migration DOE-FE0004962

Sanjay Srinivasan The University of Texas at Austin

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 12 – 14, 2014

Presentation Outline

- Project Overview
- Technology Benefits
- Technical Status
- Wrap up
 - Key accomplishments
 - Lessons learned, future plans

Benefit to the Program

 Project Objective: new technique for probabilistic assessment of CO₂ plume migration based on paradigm of geological model-selection using injection data

Program Goal Supported

Develop and validate technologies to ensure 99 percent storage permanence.

Project Benefits Statement

The project is developing a modular software for quantifying the uncertainty in predicting CO_2 plume migration using injection data. The technology is based on grouping geologic models based on connectivity characteristics and subsequently performing model selection within a Bayesian framework using injection data.

The development of a

cost-effective technique for enhanced monitoring will enable proactive remediation of plume migration direction so as to ensure 99% containment

Project Overview: Goals and Objectives

Project Goals:

- quantify connectivity/dynamic characteristics of large ensemble of geologic models
- group models based on connectivity characteristics
- perform model selection within Bayesian framework
- develop modular software for implementing the technique

Program Goal Supported

Develop technologies to monitor and verify if 99 percent of injected CO₂ remains in the injection zones

Project Overview: Success Criteria

Quantitative assessment of information in injection data

Development of screening tool for assessing impact of geology on injection response

Classification technique for accurately grouping models based on similar connectivity characteristics

 Software with several options for model classification, PCA, MDS etc and several proxies for assessing reservoir connectivity

Robust assessment of uncertainty in predicting plume migration path

- Implementation of model resampling to enhance the selection of models within a selected cluster so that the problem of model collapse is avoided
- Deployment of a modular software for plume monitoring that could be integrated with existing tools and frameworks for risk assessment

Assessment of heterogeneities with detectable signatures

Permeability Heterogeneity

Rate Fluctuations

Wavelet Analysis using Daubechies wavelet

Development of a physical Proxy and validation cases

Proxy Verification

SYNTHETIC MODEL:

- Test proxy in gravity dominated flow
- 101 x 1 x 100 grid blocks
- Uniform permeability (500 mD) with low permeability baffles (0.1 mD)

Numerical simulation result

Proxy Measurement locations

Rather than using pre-determined locations, infer locations based on maximizing dissimilarity of proxy response

Optimizing proxy monitoring locations

• Monitoring locations using new method for Krechba

Monitoring locations on a square template

Monitoring locations using PCA defined template

10

STORAGE

Model Selection Results Similar for both cases

Key Result

Selected models in final cluster exhibit common characteristics that explain field observations

Average of all models from final cluster, showing high permeability streak highlighted over all models

Probabilistic prediction of plume migration is possible using the models in the final cluster

An Alternative Connectivity based Proxy

• Fast statistical proxy based on shortest connected path between well locations

Path A1 of model #1

Path A2 of model #2

Compute discrete Frechet Distance (points of path A1, points of path A2)

Models exhibit an orderly transition in connectivity characteristics when projected on a metric space

Connectivity Analysis of Models

Connectivity analysis

Measure a connectivity between a well and grid blocks

- *Edge weight* =
$$\frac{\sqrt{Vp_i \times Vp_j}}{T_{ij}}$$
, V_p : pore volume, T: transmissibility

→ travel time of 1 unit viscosity fluid between ith and jth grid blocks under 1 unit pressure

- Calculate the shortest paths from the well using Dijkstra's algorithm
- Calculate migrated regions by truncating the injected amount in order of travel time
- Can't consider buoyancy and travel time dependent on pressure and viscosity

Modified Connectivity Analysis

- Modify connectivity analysis → scaled connectivity analysis
- Bring potential difference and viscosity

$$EdgeWeight = \frac{\sqrt{V_{p_i} \cdot V_{p_j}}}{T_{ij} \cdot \Delta \Phi \cdot \mu_{CO_2}} \quad \Delta \Phi = \Delta P + \Delta \rho gh$$

- Calculate rough ΔP from the analytical solution for CO₂ injection in a brine aquifer presented by Manthias *et al.* (2011)
- Use scaled edge weights so that the fluid moves along the edge with the minimum weight at each grid block

15

STORA

Model Expansion

Model expansion is necessary

Ensemble-based pattern search

- Sample common conditioning points from the ensemble
- Simulate additional models by searching for conditioning data pattern over the ensemble of selected models

Ensemble-based pattern search

Pattern Search Algorithm

Integrated, modular software

Modular Software

A set of the most probable models

- Key objective
 - To select a set of the most probable models honoring injection data among geological models
- Software requirements
 - Separation between generating geological models and selecting in the software requires a complicated importing process
 - Allow to access geologic models directly and to develop additional modules
- SGeMS
 - A powerful freeware providing most of geological modeling algorithms
 - A new algorithm can be added as a plugin

SGeMS Interface

Procedure of Running the Model Selection Plugin Algorithm input panel

Algorithm type Scaled Connectivity Anaysis (SCA) Random Walker													
Random Walker													
© Random Walker [1]													
Model Expansion													
Prior models: Permeability and Porosity													
<-None -> [2] •													
<-None ->	[3] -												
Unit system													
SI	[4] -												
Grid system													
Type of K direction DOWN	[5] -												
Depth of grid blocks (optional)													
<- None ->	- C												
	•												
Corner point file (optional)	[7]												
Simulation													
Observation file	[8]												
Observation type Well data	[9] -												
Simulator input file	[10]												
Perm include file name	[11]												
Poro include file name	[12]												
Simulator file	[13]												
CMG simulator command	[14]												
[#simulator_file] -jacpar -parasol 6 -wait -dd -f [#simulator	_input_file]												
Report input file	[15]												
# of header lines in report output	[16]												
Report file	[17]												
CMG report command	[18]												
[#report_file] -f [#report_input_file] -o [#report_output_	file]												

General SCA Random Walker Model Expansion	•								
Algorithm type									
Scaled Connectivity Analysis (SCA)									
© Random Walker [1]									
Model Expansion									
Prior models: Permeability and Porosity									
<-None -> [2] •									
<-None ->	[3] -								
Unit system	[4]								
SI	[4] -								
Grid system									
Type of K direction DOWN	[5] -								
Depth of grid blocks (optional)	[6]								
<- None ->	-								
	•								
Corner point file (optional)	[7]								
Simulation									
Observation file	[8]								
Observation type Well data	[9] -								
Simulator input file									
	[10]								
Perm include file name	[10]								
Perm include file name Poro include file name	[11]								
	[11] [12]								
Poro include file name Simulator file	[11] [12] [13]								
Poro include file name	[11] [12] [13] [14]								
Poro include file name Simulator file CMG simulator command	[11] [12] [13] [14] r_input_file]								
Poro include file name Simulator file CMG simulator command [#simulator_file] -jacpar -parasol 6 -wait -dd -f [#simulato Report input file	[11] [12] [13] [14] r_input_file] [15]								
Poro include file name Simulator file CMG simulator command [#simulator_file] -jacpar -parasol 6 -wait -dd -f [#simulator Report input file # of header lines in report output	[11] [12] [13] [14] r_input_file] [15] [16]								
Poro include file name Simulator file CMG simulator command [#simulator_file] -jacpar -parasol 6 -wait -dd -f [#simulato Report input file # of header lines in report output Report file	[11] [12] [13] [14] r_input_file] [15] [16] [17]								
Poro include file name Simulator file CMG simulator command [#simulator_file] -jacpar -parasol 6 -wait -dd -f [#simulator Report input file # of header lines in report output	[11] [12] [13] [14] r_input_file] [15] [16] [17] [18]								

Choose prior models for permeability and porosity

Choose a unit system

Choose a grid system (ex: K direction)

Provide observation data and information to run a simulator and read simulation results

Input data of SCA

eneral SCA Random Walker Model expansion										
Operating conditions										
CO2 volume in SC / CO2 volume in RC 0.004147892										
Injection period (yrs) 2										
Injection flow rate in SC (m3/day) 10000										
Injector location(i j k) 100 100 7										
Fluid properties in reservoir condition										
CO2 viscosity (cp) 0.036										
CO2 density (kg/m3) 443										
Water density (kg/m3) 1007										
SCA parameters										
Average CO2 saturation 0.5										
Down dip angle limit (degrees) 5										
CO2 relative perm at Avg. CO2 Saturation 0,2932										
Reservoir thickness (m) 20										
Power averaging for permeability 0										
-1=harmonic, 0=geometric, 1=arithmetic										
Clustering parameters										
Number of clusters (Optional)										

Technical Status Effect of Unknown Leak on Model selection

• Reservoir model for the Krechba reservoir (In Salah)

Accomplishments to Date

- Sensitivity analysis of impact of subsurface heterogeneity on injection response
- Fast model responses
 - Proxy to account for permeability heterogeneity, fluid compressibility, buoyancy effect
 - Statistical proxy using Frechet distance between shortest connected path between wells
- Effective model classification
 - PCA, Kernel PCA, Multi-dimensional scaling methods
- Re-sampling scheme for posterior uncertainty modeling
- Modular software for model selection
 - Beta-testing using student volunteers using synthetic and field datasets

Summary

- Model Selection Algorithm allows delineation of dominant heterogeneity features that drive fluid migration
- Fast proxies such as particle-tracking proxy and scaled connectivity analysis provide rapid assessment of reservoir / aquifer connectivity
- Modular software able to predict plume movement in In Salah and Utsira/Sleipner
- Model selection procedure sensitive to presence of unresolved leaks and other factors such as boundary conditions
- Model Selection approach is being extended to incorporate information from surface deflection data

 Project has provided training and research experience for two graduate students – Hoonyoung Jeong (current PhD student) and Sayantan Bhowmick (graduates and with Conoco Phillips) and a post-doctoral fellow – Dr. Liangping Li

Gantt Chart

Phase	Task	Milestone	YEAR 1				YEAR 2				YEAR 3				Interdependencies
		Σ	1	2	3	4	1	2	3	4	1	2	3	4	
	1														Project management
	2	1.A			Χ										Verify feasibility for Phase 2
1	3.1												Pre-r	Pre-requisite for software	
3	3.2	1.B				Χ									development in Phase 2
	4.1														Provides geologic consistency to
	4.2														interpretation of injection data
	5	2.A								X					Combines Tasks 2-4 into software platform
2	6	2.B									X				Validates Task 5
	7														Uses Phases 1, 2 to quantify uncertainty
3	8.1														Uses Phase 2 to apply concept to field data
	8.2	3.A										Х			Applies Phase 2 to In Salah
	8.3	3.B												Χ	Applies Phase 2 to RCSPs
				Pha	se 1			Pł	nase	2 (Pł	nase	93		

Bibliography

Journal, multiple authors:

- Srinivasan, S., and Jeong, H., Modeling the Uncertainty in CO₂ Plume Migration During Sequestration Using a Model Selection Approach. Accepted for publication in special issue of Indian Geophysical Union (IGU), September, 2014.
- 2. Li, Liangping, Srinivasan, S., Zhou, H. and Gomez-Hernandez, J., "Simultaneous estimation of both geologic and reservoir state variables within an ensemble-based multiple-point statistic framework," accepted for publication in *Mathematical Geosciences*, September 2013.

Publication:

- Jeong, H., Srinivasan, S. and Bryant, S.L., 2012, Uncertainty Quantification of CO₂ Plume Migration Using Static Connectivity, proceedings of International Conference on Greenhouse Gas Technologies (GHGT), Kyoto, Japan.
- Bhowmick, S., Srinivasan, S. and Bryant, S.L., 2012, Prediction of Plume Migration Using Injection Data and a Model Selection Approach, proceedings of International Conference on Greenhouse Gas Technologies (GHGT), Kyoto, Japan.