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Program Goal and Project Benefits

 Program Goal:

— Support industry’s ability to predict CO, storage
capacity in geologic formations to within £30 percent.

e Project Benefits Statement

- This research seeks to develop a set of robust
mathematical models to predict how coal and shale
permeablility and injectivity change in the presence of
CO,. When complete, this work will more accurately
predict permeability/ injectivity in these reservoir types,
contributing to the Program goal of more accurately
predicting CO, storage capacity in geologic formations.



Project Overview:
Goal and Task Objectives

Goal:

Develop robust mathematical models to accurately predict how coal and shale
permeability and injectivity change with CO, injection, incorporating the
following the Task Objectives:

Objectives:
« Task 2 — Observe and measure changes in coal and shale mechanical
properties with exposure to high pressure CO,

« Task 3 - Investigate cleat and matrix swelling and shrinkage during gas
production and CO, injection.

« Task 4 - Model CO, injection under in-situ conditions and develop improved
algorithms and adsorption models.

« Task 5 — Advanced simulation of coal permeability changes during CO,
Injection and storage.

.+ Task 6 —Reporting results, delivering code and data

SP081214



Technical Status - Task 2
Change in Coal and Shale Properties
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« COAL - Young's Modulus decreases & Poisson’s Ratio increases when
methane is displaced with CO, indicating that the sample does get softer,
although changes are not significant.

« SHALE — Relative to methane, CO, weakens shale because the change in
Poisson’s Ratio with pore pressure is larger for CO, than for methane.

|Southern Illinois University
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Technical Status — Task 3
Investigate Cleat & Matrix Swelling/ Shrinkage

Compressibility under
replicated field conditions is
not constant
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Technical Status - Task 4
Modeling CQO, Injection under In-Situ Conditions

 Adsorption — Gas/Water Mixtures
» Investigated competitive adsorption behavior of gas/water mixtures on wet coals

» Developed a new Gibbs-energy-driven multiphase (three-phase) algorithm for
gas/water mixtures.

Example: Wet Wyodak Coal at 328.2 °K
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Technical Status — Task 4
Modeling CO, Injection under In-Situ Conditions

 Adsorption
 New data for pure-gas adsorption on shale
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Technical Status — Task 4
Modeling CQO, Injection under In-Situ Conditions

 Equation-of-State (EOS)
— A new equation-of-state volume-translation method provides accurate predictions
of the saturated and single-phase densities of diverse classes of molecules

— Special emphasis on fluids found in reservoir systems.
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Technical Status — Task 4
Modeling CQO, Injection under In-Situ Conditions

 Equation-of-State (EOS) Predictions using the new Peng-Robinson
EOS Volume Translation Method

* Predictions for single phase liquid densities & comparison with other models

» Predictions of phase equilibrium calculations and volumetric properties
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Technical Status - Task 5
Advanced Modeling of Permeability Changes

 Permeability changes depend
on initial cleat porosity and
abandonment pressure.

e During CO, Injection, the stress
path moves away from the coal
failure envelope due to:

— replacement of CH, by CO,, (2)

— further injection of CO, to raise
reservoir pressure.
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« Shear failure of coal in a depleted CBM reservoir should not

happen during CO, injection.

— failure of coal might happen_before CO, injection if the reservoir is

depleted to very low pressure (< 200 psi).
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Technical Status — Task 6

Technology Transfer

* Flow and storage modeling for shale
sequestration

« Testing of code against large-scale projects.

» Basin-oriented review of coal and shale storage
potential.

« Coal and Shale Property Database

« Coal-Seq Screening Module

» Coal-Seq Website (www.coal-seq.com)

« Coal-Seq Forums
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http://www.coal-seq.com/

Accomplishments to Date

Laboratory tasks 2 through 5 completed and reports final:

« Changes in Coal Properties with Exposure to CO, - (No code required)
» Cleat and Matrix Shrinkage/Swelling

» Modeling of CO, Injection under Field Replicated Conditions - (Code delivered
to DOE)

« Advanced Modeling of permeability changes during CO, sequestration

Flow and Storage Modeling for Shale Sequestration

completed
* Includes a detailed history match of a Marcellus Shale well

Coal and Shale Property database assembled
Two Coal-Seqg Forums held
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Key Findings/Lessons Learned

Tasks 2 and 3 — Change in Coal and Shale Properties with CO,
Injection; Cleat and Matrix Swelling/ Shrinkage

* Observed changes in Poisson’s ratio and Young’s modulus due to
Injection of CO, are too small to support the theory of “coal
weakening associated with methane depletion or CO, injection”.

« CO, Injection should be quantity-controlled rather than pressure-
controlled to prevent rapid swelling, tensional strain and coal failure
In the vicinity of the injection.

« Coal compressibility, expressed by parameters, C, and C,, Is not
constant, but will vary as the pore pressure of the sorbing gas
changes in the reservoir.

15
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Key Findings/Lessons Learned

Task 4 — Modeling CO, Injection Under In-Situ Conditions
e Formulated a new approach for modeling the competitive adsorption of
gas/water mixtures.

 Developed a rigorous model for describing the adsorption-induced swelling of
coals.

« Developed a new volume-translation function for saturated and single-phase
liquid densities at high-pressures.

 Generalized the Peng-Robinson equation of state for describing the vapor-liquid
equilibrium of gas/water mixtures at high-pressures.

 Provided new data and insight to gas adsorption behavior on wet coals by
measurement of CO, isotherms on wet coals.

 Provided new data for pure-gas adsorption on shale and have extended coal
adsorption models to the case of shale-gas adsorption.

16
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Key Findings/Lessons Learned

Task 5 — Advanced Modeling of Coal Permeability Changes

 Permeability Changes With Methane Depletion

— Successful history match of exponential permeability increase up to failure in a San
Juan Basin CBM well.

— General behavior is a flattening of the exponential permeability increase with
depletion, interpreted as a loss of permeability due to fines creation.

— If cleat porosity is greater than 0.5%, there appears to be no appreciable permeability
increase with depletion.

— To model the observed permeability increase with depletion, cleat porosity
must be less than 0.2%.
« Permeability Changes After Coal Failure
— Permeability after failure appears to vary from well-to-well.

— Modeling permeability changes after failure is important to better forecast long term
gas rates and ultimate recovery in San Juan CBM wells.

— Shear failure of coal in a depleted CBM reservoir should not happen during
CO, injection.

— However, it might happen before CO, injection if the reservoir is depleted to very low
pressure (< 200 psi).

17
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Key Findings/Lessons Learned

Task 5 — Advanced Modeling of Coal Permeability Changes

 Permeability Changes With CO, Injection

— Tensile failure should occur if during CO, injection, reservoir pressure exceeds
overburden pressure, creating horizontal cracks along bedding planes.

— This would also increase CO, injectivity, unless the tensile failure created coal
fines that plugged the fractures.

— At low depletion pressure, CO, is injected while raising reservoir pressure. CO,
replaces methane and matrix swelling exceeds the effect of pressure-induced
cleat inflation, significantly reducing coal porosity and permeability. Coal
anisotropies suppress cleat inflation.

— CO, injectivity is predicted to be difficult in the San Juan basin due to cleat
anisotropy (g = 0.2), plus very low initial cleat porosity.

— Ideal strategy for successful CO, injection: Inject CO, at the lowest depletion
pressure possible, and at a rate slow enough that reservoir pressure barely
rises.

18
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Next Steps and Future Plans
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Final Steps
Testing of Code Against Large Scale Projects

Insert simulation modules into a stand-alone simulation code
Validate code against field data set (Pump Canyon CO,/ECBM pilot)

Basin Oriented Review of Coal and Shale Storage Potential

Assess the CO, storage potential of San Juan Basin’s Fruitland Coal & the Marcellus Shale

Coal/Shale Property Database

Database of porosity and CO, and methane isotherms for US coal and shale gas basins
Data from public and private sources
Database will serve as basis for the Screening Model

Screening Model

Develop a screening model capable of estimating CO, storage for gas shale and coal seam
reservoirs

Will include findings from CoalSeq lll (shrinkage/swelling and failure)

Will be built in Visual Basic

Input parameters will be available to choose from the Coal/shale Property Database
Previous simulations will provide CO, storage volumes and injection rates



Appendix:
Organization Chart
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Appendix: Gantt Chart
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Appendix: Gantt Chart, cont.
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Technical Status - Task 5
Advanced Modeling of Permeability Changes

 Two opposing permeability effects
can occur near coal shear failure:

— Permeability can increase due to
dilatancy (brittle failure).

— Permeability can decrease due to
changes in coal mechanical
properties, or due to creation of
coal “fines”.

— Which permeability change occurs
will depend partly on coal rank.

 From analysis of field data, it
appears that permeability flattens
or decreases after failure occurs
at low reservoir pressure.

25
SP081214

Permeability decrease is
expected due to fines creation,
movement, and plugging,
especially in a soft rock such
as coal.
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Technical Status — Task 5
Advanced Modeling of Permeability Changes
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