Zero Emissions Research and Technology (ZERT) II – Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397

> Lee H Spangler Energy Research Institute Montana State University

> > •U.S. Department of Energy
> > •National Energy Technology Laboratory
> > •Carbon Storage R&D Project Review Meeting
> > •Developing the Technologies and
> > •Infrastructure for CCS
> > •August 12-14, 2014

Presentation Outline

- Laboratory studies to understand subsurface CO₂ behavior
- Mitigation method development bio-sealing of shales
- Fiber sensor development
 - Soil CO₂ sensor
 - Distributed borehole seismic sensor
- Coal bed methane enhancement / mitigation
- Analog studies to inform risk analysis

Benefit to the Program

Program goals being addressed.

- Develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.
- Conduct field tests through 2030 to support the development of BPMs for site selection, characterization, site operations, and closure practices.

Project benefits statement.

ZERT II supports Storage Program goals by 1) developing computational tools for simulating CO_2 injection, storage and trapping, 2) performing basic geoscience experiments to address relationships between properties such as wetting, relative permeability, saturation, and capillary pressure that will improve understanding of CO_2 behavior in the reservoir and help with model parameterization 3) investigating analogs to understand risks to storage security 4) conducting field experiments to test near surface monitoring technologies and 5) developing novel biocontrolled leakage mitigation technology

Project Overview: Goals and Objectives

Fundamental Geosciences

Objective: Develop methods to perform *in situ* measurements during core flood and flow experiments

Biofilms, Biomineralization and Biogenic Processes

- Objective: Perform a comprehensive evaluation of techniques for current and novel CO₂ sequestration concepts associated with microbial biofilms.
- Objective: Evaluate the potential for coal-bed mediated CO2 sequestration and enhanced methane production.

Natural Analogs of Escape Mechanisms

 Objective: Characterize the physical, mineralogical, and geochemical characteristics of outcrops of hydrothermal plume related rocks to determine their usefulness as natural analogs of breached and healed caprocks for carbon sequestration.

Optical Detection for Carbon Sequestration Site Monitoring

- Objective: Demonstrate the feasibility of creating an in-line fiber optic sensor for CO₂ that utilizes sections of photonic bandgap (PBG) fibers interspersed with sections of single mode optical fiber.
- Objective: Develop a low cost multispectral imager to detect CO₂ -induced plant stress

Validation of Near-surface CO₂ Detection Techniques and Transport Models

 Objective: Determine, via field experimentation, the efficacy and detection limits for existing and emerging near-surface CO₂ detection technologies.

Technical Status

- Focus the remaining slides, logically walking through the project. Tell the story of your project and highlight the key points as described in the Presentation Guidelines.
 Organize the remainder of the talk as though it was being given at a technical conference.
- When providing graphs or a table of results from testing or systems analyses, also indicate the baseline or targets that need to be met in order to achieve the project and program goals.

Capabilities for *in-situ* MRI studies of CO₂/brine in rock cores at Montana State University

Sarah L. Codd, Joseph D. Seymour, Joshua M. Bray, and Cody A. Prather Magnetic Resonance Microscopy (MRM) lab June 22, 2014

Temco custom FCH Core Holder

Core Holder Schematic

- A. Core-challenge fluid (outlet)
- B. Recirculating fluid (outlet)
- C. Recirculating fluid (inlet)
- D. Core-challenge fluid (inlet)
- E. Thermocouple
- F. PEEK composite sheath

Max. pressure: 5000 psi Max. temperature: 150°C

Core holder FI

Flow loop mock-up

Previous strategy: 3D spin-echo imaging

C. A. Shaw, S. J. Vogt, J. E. Maneval, T. Brox, M. L. Skidmore, S. L. Codd, J. D. Seymour, "Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments" Poster: GC31C-0896, Fall Meeting, AGU, San Francisco, Calif., Dec. 13-17, 2010

STATE UNIVERSITY

MRI Sequence Comparison

Spin-echo imaging (SEI)

- High resolution
- Slower, repetition-time-limited acquisition
- High power demands
- Gradient noise/vibration

Zero echo time imaging (ZTE)

- Bandwidth limited (lower resolution)
- **Rapid**, steady-state k-space acquisition

time

- Low power demands
- "Silent mode", low vibration

ZTE imaging demonstration: H_2O displacement by injected CO_2 gas in Berea core

2. Mount in core holder/RF

coil

Intensity (a.u.)

Rock core images – Background signal subtraction

Rock core, MRI side-view

Image of saturated core Image with dry core

Saturated core only

Sources of ¹H background signal:

- Plastics of the RF coil currently having them retrofitted!
- AFLAS overburden sleeve have a FEP heat-shrink sleeve with no signal

Rock core images – CO₂ injection test

- 1 sagittal plane (lengthwise); 3 axial planes: top, middle, bottom
- FOV: 100 × 100 × 100 mm³
- Resolution: 781 μm
- Time step: 3 min. 30 sec. (53 second scan time)

Rock core images – CO_2 injection test

- 1-D projection of signal intensity
- Time step is 3 min. 30 sec.

Acidic solutions

Bright spots in the overburden sleeve?...

Late-time point

Acid damage in the headspace!

Align distribution plugs to avoid dead volume.

Temco is sending replacements free of charge.

Switching between liquid/CO₂ in pump Extra ISCO 500D pump

Potential for long-duration studies

Capabilities summary

The Temco MRI-compatible core holder enables us to:

- 1. Observe water in real, porous rock cores
- 2. Inject liquids, gases, or supercritical fluids (brine, CO₂, etc.)
- 3. Acquire 3D images in 50 sec. with ~1 mm resolution
- 4. Observe transport and structural changes in situ

MONTANA STATE UNIVERSITY

Microbially Induced Carbonate Precipitation (MICP)

Cunningham, Gerlach

+ pH and alkalinity (increase in OH⁻ and HCO₃⁻) increase SATURATION STATE OF CALCITE

 $CO(NH_{2})_{2} + H_{2}O \rightarrow NH_{2}COOH + NH_{3}$ $NH_{2}COOH + H_{2}O \rightarrow NH_{3} + H_{2}CO_{3}$ $CO(NH_{2})_{2} + 2 H_{2}O \rightarrow 2 NH_{3} + H_{2}CO_{3} \quad \text{(Urea hydrolysis)}$ $2NH_{3} + 2H_{2}O \leftrightarrow 2NH_{4}^{+} + 2OH^{-} \quad \text{(pH increase)}$ $H_{2}CO_{3} + 2OH^{-} \leftarrow \rightarrow HCO_{3}^{-} + H_{2}O + OH^{-} \leftarrow \rightarrow CO_{3}^{2-} + 2 H_{2}O$ $CO_{3}^{2^{-}} + Ca^{2^{+}} \leftarrow \rightarrow CaCO_{3} \quad \text{(carbonate precipitation)}$

Mitchell, AC and Ferris, FG (2006).

Model ureolytic organism: Sporosarcina pasteu printing provide a start of the second s

Ureolysis is only one possible way to manipulate the saturation state of carbonates Mitchell, AC. and Ferris, FG. (2006) Environmental Science and Technology, 40, 1008-1014.

Mitchell, AC. and Ferris FG. (2005) Geochimica Et Cosmochimica Acta, 69 4199-4210.

Bio-sealants in Mont Terri Conducted by Montana State University

Permeability reduction due to biomineralization in one-inch diameter Opalinus shale core drilled from original shale sample, July 18, 2013

X-Ray CT scans for two locations along the axis of core OP1-4

Permeability Tests With & Without Propants

Split OP2-3 core and core wrapped in PTFE tape. Core length was 5.77 cm

OP2-4 Core showing proppant placement and wrapping pieces with PTFE tape

Table 1 Initial Permeability values prior to biomineralization						
Core	Area (cm ²)	Average Length (cm)	Flow Rate (ml/min)	Pressure drop (meters H ₂ O)	Calculated Permeability (mD)	
OP2-3	5.43	5.77	10.0	7.3	249	
OP2-4	5.43	4.01	40.0	2.2	2,420	

Inline Fiber Sensor

The inline fiber sensor uses a series of segmented photonic bandgap (PBG) fiber in series to for a inline fiber sensor array.

Each segment is addressed using time of flight of the laser pulse.

 CO_2 diffuses into the PBG fiber to allow spectroscopic measurements of CO_2 concentration.

Challenge: PBG fiber is larger diameter than SMF and conventional splicing collapses hollow core

The PBG fiber allows interaction of the laser light and CO_2 in the hollow core.

K. Repasky

Fiber Sensors

Schematic of the inline fiber sensor. Carbon dioxide measurements can be made in each of the photonic bandgap (PBG) fibers.

V-groove structures where designed and manufactured allowing precise and repeatable alignment of the PBG fiber and SMF fiber.

> The transmitted light during a wavelength scan is shown as the red line. The light reflected from the second segment of the inline fiber sensor is shown as the blue line. Dividing these two signal would yield a transmission spectrum. The carbon dioxide absorption feature is seen in the reflected signal and can be used to monitor carbon dioxide concentrations.

After each PBG fiber section, a gap allows a portion of the light to be reflected back to the detector while the remainder of the light couples into a SMF fiber. The gap spacing determines the reflectivity.

Fiber Sensors

A single section of the distributed fiber seismic sensing system schematic, the 400ns pulse is sent down the FGB line, the fiber stretcher will alter the path length between the two FBG's which will change the amplitude of the 200ns interference signal created by the two overlapping reflected 400ns pulses. A fiber stretcher was used to mimic the effects of a seismic wave.

The fiber seismic sensor set up for laboratory testing. The ability to measure seismic events over a distributed fiber seismic sensor array has the potential to allow monitoring of the injected carbon dioxide plum.

Fiber Sensors

Careful filtering of the signal is needed to achieve good signal to noise performance. An active filter was designed as shown in the upper schematic with the Bode plot showing the filter frequency response in the lower plot. The corner frequency can be changed while maintaining the 60 dB/decade falloff.

ro Emissions

The bottom (green) line represents the signal sent to the fiber stretcher while the top (blue) line represents the signal seen by the fiber sensor.

Fiber sensor signal as a function of time. The blue line for the plots on the left represent the unfiltered signal while the red line represents the filtered signal. The right hand plots utilizes a sliding window averaging. The strain sensitivity of the fiber sensor is measured to be 60×10^{-9} indicating this sensor can work for subsurface seismic monitoring.

MSU

 Center for Biofilm Engineering

Algae enhanced CBM Microcosm experiments

Three sets of microcosm experiments have been run and are continuing at present. These microcosm experiments all involve the addition of algae extract as a stimulant to methane production from coal, compared to methane production from the same coal without algae addition. The description of each experiment is as follows.

Experiment 1. Coal from a surface mine in Decker, MT, inoculum from a USGS well in the Powder River Basin, synthetic CBM produced water (main ingredients magnesium, potassium, calcium, ammonium, (as chloride), sodium bicarbonate, experiment started 9/10/2010.

Experiment 2. Decker coal, same inoculum, Synthetic CBM water plus sulfate, started 5/4/2011,

Experiment 3. Decker coal, filtered CBM produced water from a USGS well, Same Inoculum. Started 4/5/2012

Lab Results:

Biostimulation of methane production from coal

- Batch systems with native PRB microbes
- Increased methane with algae extract

Experiment 1

Coal from a surface mine in Decker, MT, **Inoculum** from a USGS well in the Powder River Basin, Water synthetic CBM produced water Started 9/10/2010

Media +Coal

Media +Yeast +Coal

Media +Algae Extract +Coal

Experiment 1

Experiment 2

Experiment 3

Fall 2013 drilling and sampling program in the Flowers-Goodale coal horizon near Birney MT. Coal samples were recovered along with samples of produced water from the coal seam

Elliott Barnhart Ph.D. Candidate, Microbiology Center for Biofilm Engineering USGS – Pathways student

Center for Biofilm Engineering

Microbial inoculum samples were recovered from Flowers-Goodale coal in June 2014 using Diffusive Microbial Sampler (DMS)

Large Number of Participants / Methods

47 investigators31 instruments / sensor arrays5 univ. 6 DOE labs, 4 companies

Investigator	Institution	Monitoring Technology	Number of Sensors
Arthur Wells Rod Diehl Brian Strasizar	National Energy Technology Laboratory	Atmospheric tracer plume measurements	1 tower (4m) Blimp (Apogee Scientific) with 3 tether line samplers
		Bee hive monitoring for tracer with sorption tube and pollen trap	2 hives
		Automated Soil CO ₂ flux system	4 chambers
William Pickles Eli Silver Erin Male	University of California- Santa Cruz	Hand held hyperspectral measurements (plant health)	1 instrument
Yousif Kharaka James ThordsenGil AmbatsSarah Beers	United States Geological Survey*	Ground water monitoring	1 EC and temperature probe, Dissolved oxygen probe, lab analysis of water samples
Henry Rauch	West Virginia University	Water monitoring well headspace gas sampling	1 sensor
Lucian Wielopolski Sudeep Mitra	Brookhaven National Laboratory*	Ineleastic neutron scattering (total soil carbon)	1 instrument
Martha Apple Xiaobing Zhou Venkata Lakkaraju Bablu Sharma +2 students	Montana Tech*	Soil moisture, temp. Chlorophyll Content Meter , Fluorescence Meter , LI-COR 2000 to measure leaf area index Leaf Porometer to measure stomatal conductance	5 sensors
		Infrared radiometry (plant health) Atmospheric humidity and temperature,	2 instruments 1 sensor each
		accumulated rainfall Plant root imaging Soil conductivity	1 camera 1 sensor
		Handheld hyperspectral measurements (plant health)	1 instrument
William Holben Sergio Morales	University of Montana*	Microbial studies	Lab analysis

Large Number of Participants / Methods

Investigator	Institution	Monitoring	Number of Sensors	
		Technology		
Lee Spangler	Montana State	Water content	15 sensors	
Laura Dobeck	University	reflectometers (soil		
Kadie Gullickson		moisture)		
		Automated soil CO ₂	5 long term	
		flux system	chambers, 1 portable	
			survey chamber	
		CO_2 soil gas	6 sensors	
		concentration		
Kevin Repasky (PI)	Montana State	Underground fiber	4 sensors	
Jamie Barr	University	sensor array (CO ₂ soil		
D	D	gas concentration)		
Rand Swanson	Resonon*	Flight based	linstrument	
		hyperspectral		
		imaging system		
Joseph Shaw (PI)	Montana State	Multi-spectral	linstrument	
Justin Hogan	University	imaging system (plant		
Nathan Kaufman		health)	1	
		Meteorological	1 tower	
		measurements	1	
Julianna Fessenden	Los Alamos National		1 instrument	
+3 students	Laboratory	stable carbon isotope		
		detection system	T ala analara'a	
		Flask sampling for in situ isotope detection	Lab analysis	
Sam Class	Los Alamos National	-	1 instrument	
Sam Clegg		Frequency-modulated	1 Instrument	
Seth Humphries	Laboratory	spectroscopy (FMS) open-air path		
Thom Rahn	Los Alamos National	Eddy covariance	1 tower	
	Laboratory	Eddy covariance	1 tower	
James Amonette	Pacific Northwest	Soil CO ₂ flux	27 chambers	
Jon Barr	National Laboratory	(steady-state)	27 chambers	
Sally Benson (PI)	Stanford University*	Commercial cavity	1 instrument	
Sam Krevor	/ Picarro	ringdown real-time	1 moutument	
Jean-Christophe	Instruments*	measurements of δ^{13} C		
Perin	motranonto	and CO_2 in air		
Ariel Esposito				
Chris Rella (Picarro)				
Greg Rau	Lawrence Livermore	Commercial cavity	1 instrument	
Ian McAlexander	National Laboratory	ringdown real-time		
(LGR)		measurements of δ^{13} C		
		and CO_2 in air		
Jennifer Lewicki	Lawrence Berkeley	CO_2 soil gas	8 sensors	
	National Laboratory	concentration		
		CO_2 atmospheric	2 sensors	
		concentration		
		Chamber soil CO_2	1 instrument	
		flux measurements		
		Meteorological	1 tower	
Flux Chamber

J.L. Lewicki, LBNL

50 m

0

Accomplishments to Date

- Modified two computational codes used for CO₂ simulations
- Studied multiple analogs to inform risk assessment
- Developed and performed initial field tests on three prototype moderate area near surface detection technologies
- Performed studies to deepen understanding of capillary trapping mechanism
- Hosted other academic institutions, gov. agencies and private sector entities in field experiment

Accomplishments to Date

- We have demonstrated biomineralization sealing of fractured shales achieving four orders of magnitude permeability in fractures with several mm apertures.
- Methods for monitoring biogenic methane production from coal have been successfully developed and three sets of long term coal-to- methane experiments are on-going.
- We now have the capability to study biogenic coal-to-methane conversion using coal samples, formation water, and microbial inoculum from the same location (Flowers-Goodale coal layer near Birney MT)
- An MRI-compatible core holder and new pulse sequence enables us to: 1) Observe water in real, porous rock cores, 2) Inject liquids, gases, or supercritical fluids (brine, CO2, etc.) 3) Acquire 3D images and 4) Observe transport and structural changes in situ in ~50 sec. with ~1 mm resolution
- Achieved strain sensitivity for a fiber sensor of 60 x 10⁻⁹. Next step is to develop non-Bragg grating technique for downhole distributed seismic sensing

Summary

- Key Findings Enrichment of coal microcosm experiments with Algae extract and _____resulted in increased methane production of _____to___% compared to the same coal with out AE. These findings suggest that algae can be farmed in produced water impoundments, processed for biofuel production, and the extract used on-site to stimulate additional methane production underground. Algae farming will increase the CO2 uptake from the atmosphere thereby reducing the carbon footprint of the overall CBM operation.
- Lessons Learned There are many factors which affect the rate of biogenic methane production in laboratory microcosm experiments including maintaining field-relevant redox conditions and water chemistry. Utilizing samples of inoculum, formation water and coal from the same coal formation will minimize these and other related problems.
- Future Plans Batch microcosm experiments will continue. We are also beginning the design of flowing column coal-to-methane conversion experiments to assess methane production kinetics under representative groundwater flow conditions.

What We Have Learned

- Many near surface methods are quantitative <u>but</u>
 - Diurnal, seasonal, annual variations in ecosystem background flux affect detection limits
 - Appropriate area integrated, mass balance is a challenge
- Nearly all methods could detect 0.15 tonnes / day release at ZERT site.
- Scaling, 6 tonnes per day would be detectable over an area 40 times as large
- Surface expression was "patchy" 6 areas of ~5m radius
- Natural analogs also seem to have "patchy" surface expression

Summary

- Multiple computational codes have been improved
- Near surface detection technologies have been tested
- Analogs are providing important information to understanding of risk

ZERT II

Natural Analogs of CO₂ Escape Mechanisms Pryor Mountain and Big Snowy study areas Carbon Storage R&D Slides

Big Snowy Mountains Field Area

Pryor Mountain Study Area

Favorable sites for Hydrothermal Dolomite formation

A. Cartoon figure of paleohighs and strike slip faults showing favorable sites for hydrothermal dolomite formation, figure adapted from Davis and Smith, 2006. The Pryor Mountains are divided N -S by the Nye-Bowler lineament a major sinistral strike slip fault and the Snowy Mountain Study area has a strike slip faults which may source migrating fluids. Little Sheep Mountain and Little Mountain areas formed over paleohighs which influence the fracture density and may concentrate fluid flow in these areas.

B. Cartoon figure showing greater fault intensity in paleokarst situated over paleohigh, figure adapted from Eldam, 2012. t_1 and t_2 (green boxes) represent fracture intensity/density before and after uplift. The small arrow beneath the high could correspond to the location of the fault in the core of Little Sheep Mountain and be an area of concentrated fluid flow and breccia formation in the Madison Limestone a reservoir rock being considered in some carbon sequestration sites.

Model for the formation and fluid source of a hydrothermal breccia pipe

A. Fluid Migration Pathways In this model, hydrothermal fluids are sourced by a combination of meteoric and basement fluids that flow along pre-existing structures in the subsurface. Hydrothermal fluids rise along pre-existing structures, preferentially hydrofracturing the hanging wall side of features (modified from Huntoon, 1993; Katz et al., 2006)

B. Formation of Breccia Bodies Brecciation continues along the thrust sheet, forming shatter breccias in an increasingly vertical pattern. In both cases, hot fluids rise through strata in unpredictable patterns, creating off-shoots near sequence boundaries due to major changes in mechanical properties (modified from Katz et al., 2007). Depleted δ^{18} O and δ^{13} C in late-stage calcite and dolomite precipitated along brecciated zones and fracture systems in Mississippian limestone the Pryor Mountain and Big Snowy study areas are fingerprints of these processes. These areas are major avenues of enhanced porosity and permeability in the subsurface and have important applications at some sites in Montana where carbon sequestration is under consideration.

C. Similar model for the formation of hydrothermal breccia pipes. Hydrofracturing at the fault tip results in three stages of progressively damaged and mineralized zones. These stages include (a) a zone of permeation at the propagating fault tip, causing extensive hanging wall dolomitization; (b) a region of hydraulic fracturing and brecciation of the previously dolomitized halo, resulting in the precipitation of hydrothermal minerals; and (c) the repetition of seismic events, allowing the brecciated area to become progressively more vertical with continued activity (modified from Phillips, 1972; Davies and Smith, 2006; Jeffrey, 2014).

Hydrothermal Breccias and fluid flow examples in Little Sheep Mountain, WY

A. Hydrothermal breccia formed along an oblique to strike fracture in Madison Limestone in the LSMA. Note bleached rock along fracture and bedding planes.

B. Small dolomitized, possibly silicified breccia pipe protruding from roof of Lower Kane Cave.

C. Sample LSM-RRC008 silicified floating clast breccia near Lower Kane Cave. Matrix sampled has a δ^{18} O value of -11.07 and δ^{13} C value of 0.02 reflecting warm fluid migration.

D. Oil impregnated breccia clast from Little Sheep Mountain. SM-RRC001 sample location. Three samples were analyzed from this site for stable C and O isotopes: LSM-00I a silicified Permian limestone had the most depleted δ^{18} O value of -14.09 and the most depleted δ^{13} C value of all the samples in the Pryor Mountain study area of -10.31.

E. Gypsum coated breccia Lower Kane Cave. The walls have dried bitumen which seeped along breccia clasts and along fractures. Twenty centimeter arrow for scale is in lower portion of photo.

F. Hydrothermal breccia which may be associated with the breccias in Lower Kane Cave (B above) has a δ^{18} O value of -12.80 and δ^{13} C value of -0.03. Breccia formed along oblique to strike of the anticline axis fractures bleaching is evident on the side of the breccia.

Stable O and C Isotope Data Madison & Permian Limestone

A. Stable carbon and oxygen isotope analyses data from brecciated host rock and vein fill material from the Pryor Mountain Study area. The black symbols are from the Little Mountain area and the Pryor Mountains. The red and blue symbols are from Little Sheep Mountain. Squares are host rock, triangles vein fill material., circles breccias and crosses are the standards which are circled in the figure. The dashed boxes represent approximate value for Mississippian and Permian seawater carbonate based on Veizer et al., 1999. The oval shape shows the most depleted δ^{13} C and δ^{18} O values are mainly the late stage vein fill material and breccias.

B. Carbon and oxygen graphs of Phanerozoic δ^{13} C and δ^{18} O trend. Carbon is for combined Bochum/Ottawa (based on 1564 brachiopod (secondary layer) and belemnite (laminae pelucidae) measurements at Bochum and Ottawa and literature data (compiled from 3918 measurements for low Mg calcite (brachiopods, belemnites, oysters, foraminifera) and 96 measurements for aragonite (mollusk shells). The running mean is based on 20 Ma window and 5 Ma forward step. The shaded areas around the running mean include the 68% (+/- 1 σ for a strictly Gaussian distribution) and 95% (+/- 2 σ) of all data (From Veizer et al., 1999 and references within). Dashed boxes are values represented in top graph.

Porosity change accompanies brecciation and dolomitization

SEM and BoneJ analyses of matrix material from breccias A & B highlight the amount of porosity present. SEM images were used to determine secondary porosity associated with matrix dolomitization, which was too fine to see through petrographic analysis. The Mission Canyon Formation in the Snowy Mountain study area is characterized by poor intrinsic porosity and permeability; however, in brecciated regions matrix material of the Mission Canyon Fm. added a strong secondary fabric to the rock, creating open vuggy space and intercrystalline porosity.

SEM (left) and the BoneJ plug-in of ImageJ (right) analyses were of matrix material from breccias located along the Big Snowy fault system. SEM images (greyscale) were analyzed using a color thresholds (light blue) highlighting the amount of porosity present. Such twodimensional area calculations suggest that pore space increased by **5-25%** as a result of hydrothermal brecciation.

Hydrothermal brecciation characterized by multiple episodes of fluid flow

- A. Breccia with boxwork texture
- B. Thin section of stained breccia with late stage calcite (pink), bitumen (black) and purple fluorite filling in void space created during brecciation.
- C. Cathodoluminescence image of fracture fill shows multiple episodes of fluid migration with iron rich, darker bands alternating with regular late stage calcite.
- D. Breccia with vugs filled with dark purple to black fluorite.
- E. Inset SEM image of a corroded fluorite crystal, 1000x magnification
- F. F. & G. Large silicified, dolomitic floating clast breccia Red Pryor Mountain; clast (F) was cut, polished and stained for carbonate identification. The matrix is ferroan dolomite and there were at least two late stage calcite vein filling episodes. The last was ferroan calcite. The sample was drilled for isotope analyses from the veining and the matrix. The late stage ferroan calcite was the most depleted in δ^{18} O with a value of -15.99 and a δ^{13} C value of -0.40. The clast shows fractures healed by calcite (arrow) and later fracturing along edge of clast and through matrix.

Some factors for CO₂ Reservoir Characterization in Paleozoic reservoir rocks

•Porosity and permeability may be influenced by tectonic hydrothermal breccias:

- Heterogeneity is created by hydrothermal breccias which may serve to increase porosity or occlude it.
- Dolomitization may increase the porosity while late stage calcite may serve to occlude it.
- Faulting and brecciation within perspective reservoir units must be thoroughly characterized for such secondary networks of permeability, as they create unpredicted anisotropy within the reservoir.

•Structural position may influence the flow of fluids in the subsurface.

- Paleohighs may serve as areas of increased density of fractures and fracture intensity thus increasing porosity and permeability of the fractured units.
- Preexisting faults, fractures and joints may serve as conduits for the migration of fluids in the subsurface.

Position on a structure such as the axis of an anticline vs. the forelimb or backlimb will influence the fluid migration and trapping capabilities of the reservoir system.

•Stratigraphy and mechanical stratigraphy in Paleozoic reservoir rocks may influence fluid migration locally within a unit.

>Mechanical stratigraphy can influence the migration of fluids in a reservoir rock

>Thickness of layers within a formation respond differently to applied stress.

 Thinner units may have greater density of fractures within a stratigraphic unit and provide greater fracture permeability in that unit influencing fluid flow

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Describe project team, organization, and participants.
 - Link organizations, if more than one, to general project efforts (i.e. materials development, pilot unit operation, management, cost analysis, etc.).
- Please limit company specific information to that relevant to achieving project goals and objectives.

Organization Chart MSU Internal Management Structure

Gantt Chart

 Provide a simple Gantt chart showing project lifetime in years on the horizontal axis and major tasks along the vertical axis. Use symbols to indicate major and minor milestones. Use shaded lines or the like to indicate duration of each task and the amount of that work completed to date.

Gantt Chart

Gantt Chart

Cont.

Task 1.0 – Project Management, Planni	ng, and Rep	orting							
Subtask 1.1 Project Managemen	t								
Subtask 1.2 Project Reporting									
Subtask 1.3 Presentations and B	riefings								
Task 2.0 – Biofilms and Biomineralizati	on								
Subtask 2.1 Conduct experiments	on CO ₂ bio	mineralizatio	on deposits	on flat coup	ons and in p	orous medi	a bead packs		
Subtask 2.2 Develop method to	control dep	osition rate of	of biominera	lized calciun	n carbonate	with distanc	e along a po	rous media fl	ow path.
Subtask 2.3 Optimize biominerali	zation of is c	otopically la	beled CO2 c	arbon under	variable he	ad space pre	essure.		
Subtask 2.4 Evaluate the potenti	al for coalbo	ed mediated	CO2 seques	tration.					
Subtask 2.5 Construct a system	capable of f	lowing supe	ercritical fluid	ls through t	he bore of th	ne magnet o	f the NMR sp	bectrometer.	
Subtask 2.6 Evaluate transport p	henomena	for brine and	l supercritica	al CO2 using	magnetic re	esonance teo	chniques.		
Subtask 2.7 Evaluate transport p	henomena	for brine and	l supercritica	al CO2 in a b	ead pack or	other mode	l porous med	ia.	
Task 3.0 - Natural Analogs of Escape M	echanisms								
Subtask 3.1 Leakage versus Con	finement As	sociated wit	th Subsurfac	e Migration	of Natural	CO ₂ across I	Faults and Fr	acture Netwo	orks
Subtask 3.2 Ancient Hydrotherm	al Plumes as	s a Natural A	Analog of Hy	drofracing	Caprocks an	d Geochemi	cal Healing N	Aechanisms	
Task 4.0 – Optical Detection for Carbon	Sequestrat	ion Site Mo	nitoring						
Subtask 4.1 Underground Fiber Optic Sensors									
Subtask 4.2 UltraCompact Thermal Infrared Imagers									
Task 5.0 – Validation of Nearsurface CO	02 Detection	n Technique	es and Trans	port Models	at Experim	ental Field S	Site.		
Subtask 5.1 Seasonal Site Prepar									
Subtask 5.2 Coordinate experime									
Subtask 5.3 Collect data in supp	ort of ZERT	research pr	oject goals.						
Subtask 5.4 Investigate opportu			ement outsid	le of the ZE	RT team.				
Subtask 5.5 Support optical remo									
Subtask 5.6 Support pollen captu	re of tracers	s experiment	s:						
Task 6.0 – Tracking Emerging Issues T									
Subtask 6.1 Provide information	-								
Subtask 6.2 Provide information	to NGOs, in	dustry grou	ips, and prof	fessional gro	oups relevar	t to CCS.			
Task 7.0 – Sequestration of Carbon Diox			-	WVUSubco	ntract)				
(Detailed Task and Subtask descriptions	will be prov	vided at a lat	er date.)						

58

- Johnson, J., Shaw, J.A., Lawrence, R.L., Nugent, P., Hogan, J.A., Dobeck, L. and Spangler, L., Comparison of long-wave infrared and visible/near-infrared imaging of vegetation for detecting leaking CO2 gas. IEEE Journal Selected Topics in Applied Earth Observation & Remote Sensing, 2014. 7(5): p. 1651-1657 DOI: 10.1109/JSTARS.2013.2295760
- Barnhart, E., De Le'on, K.B., Ramsay, B., Cunningham, A. and Fields, M., Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler (DMS). International Journal of Coal Geology, 2013. 115(August 2013): p. 64-70 DOI: 10.1016/j.coal.2013.03.006.
- Cunningham, A.B., Lauchnor, E., Eldring, J., Esposito, R., Mitchell, A., Gerlach, R., Phillips, Ebigbo, A. and Spangler, L., Abandoned Well CO2 Leakage Mitigation Using Biologically Induced Mineralization: Current Progress and Future Directions. Greenhouse Gases: Science and Technology, 2013. 3(1): p. 40-49 DOI: 10.1002/ghg.1331.
- Ebigbo, A., Phillips, Gerlach, R., Helmig, R., Cunningham, A.B., Class, H. and Spangler, L., Darcy-Scale modeling of Microbially Induced Carbonate Material Precipitation In Sand Columns Water Resources Research, 2013. 48(W07519) DOI: 10.1029/2011WR011714.
- Fang, Y., Nguyen, K., Carroll, M., Xu, Y., Yabusaki, T., Scheibe, A. and Bonneville, A., Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration. Int. J. Rock Mech. Min. Sci., 2013. 62(September 2013): p. 138– 147 DOI: 10.1016/j.ijrmms.2013.05.002.

- 6. Keating, E., Hakala, Viswanathan, H.S., Carey, R., Pawar, R.J., Guthrie, G.D. and Fessenden, J., CO2 leakage impacts on shallow groundwater: field-scale reactive-transport simulations informed by Observations at a natural analog site. Applied Geochemistry, 2013. 30: p. 136-147 DOI: 10.1016/j.apgeochem.2012.08.007.
- Kneafsey, T., Silin, D. and Ajo-Franklin, J., Supercritical CO2 flow through a layered silica sand/calcite sand system: Experiment and modified Maximal Inscribed Spheres analysis,. International Journal of Greenhouse Gas Control, 2013. 14: p. 141-150 DOI: 10.1016/j.ijggc.2012.12.031
- Lauchnor, E., Schultz, L., Bugni, S., Mitchell, A., Cunningham, A. and Gerlach, R., Bacterially induced calcium carbonate precipitation and strontium co-precipitation in a porous media flow system. Environmental Science & Technology Journal, 2013. 47(3): p. 1557-1564 DOI: 10.1021/es304240y.
- 9. Mitchell, A., Phillips, A., Schultz, L., Parks, S., Spangler, L., Cunningham, A. and Gerlach, R., Microbial CaCO3 mineral formation and stability in a simulated high pressure saline aquifer with supercritical CO2. International Journal of Greenhouse Gas Control, 2013. 15: p. 86-96 DOI: 10.1016/j.ijggc.2013.02.001.
- 10. Phillips, A., Gerlach, R., Lauchnor, E., Cunningham, A. and Spangler, L., Engineered applications of ureolytic biomineralization: a review Biofouling, 2013. 29(6): p. 715-733 DOI: http://dx.doi.org/10.1080/08927014.2013.796550.

- Phillips, A., Lauchnor, E., Eldring, J., Esposito, R., Mitchell, A., Gerlach, R., Cunningham, A.B. and Spangler, L., Potential CO2 Leakage Reduction through Biofilm-Induced Calcium Carbonate Precipitation Environmental Science & Technology Journal, 2013. 47(1): p. 142-149 DOI: http://dx.doi.org/10.1021/es301294q.
- Amonette, J.E., Barr, J.L., Erikson, R.L., Dobeck, L. and Shaw, J.A., Measurement of Advective Soil Gas Flux: Results of Field and Laboratory Experiments with CO2. Environmental Earth Sciences, 2012. Published online(February 17, 2013) DOI: 10.1007/s12665-013-2259-5.
- Barnhart, E., Bowen, D., Ramsay, B., Cunningham, A.B. and Fields, M., Coal-Associated Bacterial and Archaeal Populations: Coal-Dependant Increased Bacterial Diversity. International Journal of Coal Geology, 2012. 115(2013): p. 64-70 DOI: 10.1016/j.coal.2013.03.006.
- Bonneville, A., Dermond, J., Strickland, M., Sweeney, M., Sullivan, E.C., Heggy, E. and Normand, J., Monitoring Surface Deformation Associated with an Aquifer Storage and Recovery (ASR) Site In Pendleton, OR, as an Analog for Subsurface CO2 Sequestration. Water Resources Research, 2012. Submitted
- 15. Hogan, J.A., Shaw, J.A., Lawrence, R.L. and Larimer, R.L., Low-cost multi-spectral imager for detecting gas leaks indirectly from changes in vegetation reflectance. Appl. Opt., 2012. 51(4): p. A59-A66 DOI: 10.1364/AO.51.000A59

- Hogan, J.A., Shaw, J.A., Lawrence, R.L., Lewicki, J.L., Dobeck, L. and Spangler, L., Detection of leaking CO2 gas with vegetation reflectances measured by a low-cost multispectral imager. IEEE J. Selected Topics Appl. Earth Obs. And Rem. Sens, 2012. 5(3): p. 699-706 DOI: 10.1109/JSTARS.2012.2202880
- 17. Johnson, J., Shaw, J.A., Lawrence, R.L., Nugent, P., Dobeck, L. and Spangler, L., Long-wave Infrared Imaging of Vegetation For Detecting Leaking CO2 Gas. Journal of Applied Remote Sensing 2012. 6(063612) DOI: 10.1117/1.JRS.6.063612.
- Kihm, J., Kim, J.M., Wang, C. and Xu, T., Hydrogeochemical numerical simulation of impacts of mineralogical compositions and convective fluid flow on trapping mechanisms and efficiency of carbon dioxide injected into deep saline sandstone aquifers. Journal of Geophysical Research, 2012. 117(B06204) DOI: 10.1029/2011JB008906
- Lageson, D.R., Larsen, M.C., Lynn, H.B. and Treadway, W.A., Applications Of Google Earth Pro to Fracture and Fault Studies of Laramide Anticlines in the Rocky Mountain Foreland Whitmeyer, S.J., Bailey, J.E., De Paor, D.G., and Ornduff, T., eds., Google Earth and Virtual Visualizations in Geoscience Education and Research, 2012. 492: p. 209-220 DOI: 10.1130/2012.2492(15)
- 20. Lewicki, J.L. and Hilley, G.E., Eddy covariance network design for mapping and quantification of surface CO2 leakage fluxes. International Journal of Greenhouse Gas Control, 2012. 7: p. 137-144 DOI: doi:10.1016/j.ijggc.2012.01.010.

- Viswanathan, H.S., Z., D., C., L., Keating, E., Hakala, K., S., Zheng, L. and Pawar, R.J., Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico. International Journal of Greenhouse Gas Control, 2012. 10: p. 199-214 DOI: 10.1016/j.ijggc.2012.06.007.
- 22. White, M.D., Bacon, D.H., McGrail, B.P., Watson, T.L., White, S.K. and Zhang, G., STOMP: Subsurface Transport Over Multiple Phases: STOMP-CO2 and -CO2e Guide. PNNL-21268, 2012
- 23. Windisch, C.F., Maupin, J.G.D. and McGrail, B.P., Soret Effect Study on High- Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell. Technical Report PNNL-21156, 2012
- 24. Windisch, C.F., Maupin, J.G.D. and McGrail, B.P., Ultraviolet (UV) Raman Spectroscopy Study of the Soret Effect in High-Pressure CO2-Water Solutions. Applied Spectroscopy, 2012. 66(7): p. 731-739 DOI: 10.1366/12-06591
- Zhou, X.B., Lakkaraju, V.R., Apple, M., Dobeck, L., Gullickson, K.S., Shaw, J.A., Cunningham, A.B., Wielopolski, L. and Spangler, L., Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage. International Journal of Greenhouse Gas Control, 2012. 7: p. 20-29 DOI: 10.1016/j.ijggc.2011.12.006

- 26. Cunningham, A.B., Gerlach, R., Spangler, L., Mitchell, A., Parks, S. and Phillips, A., Reducing the risk of well bore leakage of CO2 using engineered biomineralization barriers. Energy Procedia, 2011. 4: p. 5178-5185 DOI: 10.1016/j.egypro.2011.02.495.
- 27. Pruess, K., Integrated Modeling of CO2 Storage and Leakage Scenarios Including Transitions between Super- and Sub-Critical Conditions, and Phase Change between Liquid and Gaseous CO2. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 237-247 DOI: 10.1002/ghg.024.
- Xu, T., Spycher, N., Sonnenthal, N., Zhang, G., Zheng, L. and Pruess, K., TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport under Nonisothermal Multiphase Flow Conditions,. Computers & Geosciences, 2011. 37(6): p. 763-774 DOI: 10.1016/j.cageo.2010.10.007.
- 29. Xu, T., Zheng, L. and Tian, H., Reactive Transport Modeling for CO2 Geological Sequestration. Petroleum and Science and Engineering, 2011. 78(3-4): p. 765-777 DOI: 10.1016/j.petrol.2011.09.005
- Zhang, W., Xu, T. and Li, Y., Modeling of fate and transport of coinjection of H2S with CO2 in deep saline formations. Journal of Geophysical Research-Solid Earth, 2011. 116(B02202): p. 13 DOI: 10.1029/2010JB007652.

- Keating, E., Hakala, J.A., Viswanathan, H.S., Capo, R., Stewart, B., Gardiner, J., Guthrie, G.D., Casey, J.W. and Fessenden, J., The challenge of predicting groundwater quality impacts in a CO2 leakage scenario: Results from field, laboratory, and modeling studies at a natural analog site in New Mexico, U.S.A. Energy Procedia, 2010. 4: p. 3239-3245 DOI: 10.1016/j.egypro.2011.02.242.
- Krupa, K.M., Cantrell, K.J. and McGrail, B.P., Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration –Literature Review. PNNL-19766, 2010
- Silin, D., Tomutsa, L., Benson, S.M. and Patzek, T., Microtomography and Pore Scale Modeling of Two-Phase Fluid Distribution. Transport in Porous Media, 2010: p. 1-21 DOI: 10.1007/s11242-010-9636-2.

Vegetation imaging and meteorological sensing at the ZERT site – 2014 summary

Joseph Shaw

Montana State University Bozeman, Montana, USA

jshaw@montana.edu

Vegetation imaging test at ZERT field

Principle: detect leaking gas from induced plant stress

Visible & NIR imaging to locate CO2 leak via plant stress

Tethered balloon multispectral imaging

NDVI measured with balloon camera & scaffold

A STATE UNIVERSITY Thermal imaging also detects leaking gas

10 μm IR images before & after CO₂-induced plant stress

Hot spot emits higher IR radiation after start of CO₂ flow

ZERT weather station study

Two identical sensors at ZERT and MSU

3rd identical sensor mounted on backpack

- Confirmed calibration of each weather station
- Temperature variation map indicates existence of campus heat island

MSU - mobile

Heat island also varies throughout town

Thermal camera used to understand heat island

Two sample regions: grass and concrete

Higher IR radiation from concrete warms the air

Higher IR radiation from concrete warms the air (2)

Summary

- Leaking CO₂ gas has been detected via plant stress with visible and NIR imaging and with thermal IR imaging;
- Balloon-borne vis-NIR camera gives same results, but over much larger area and without airplane;
- ZERT weather station is accurate, but difference from MSU station helped us understand heat islands...