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Presentation Outline
• Benefits of Tracers to MVA Program
• Project Objectives
• Background on MVA Tracers
• Results on PFTs
• Results on Gas and Isotope 

Geochemistry
• Summary of Key Results
• Lessons Learned
• Future Plans
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Benefit to the MVA Program 
• Tracer studies of subsurface fluids and gases can 

provide information on physical and geochemical 
changes occurring in the host reservoir due to CO2
plume migration.

• Tracers used in concert with other monitoring 
methods like geophysics can lead to a fundamental 
understanding of processes impacting the behavior 
of fluids – diffusion, dispersion, mixing, advection, 
reaction.

• Tracer data can provide ground-truth on behavior of 
fluids and gases, CO2 transport properties, and CO2
saturation that can be used to constrain reservoir 
simulation models. 3



Project Overview:  
Overarching Goals  

Develop complementary tracer methods 
to interrogate subsurface for improved 
CO2 sequestration, field test methods for 
application to MVA, demonstrate CO2
remains in zone, and benefit industry 
through tech transfer.
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Specific Objectives:
1. Assessment of injections in field. PFT gas tracers are 

analyzed by GC-ECD to <pg levels.  GC and IRMS is used 
for gas chemistry and stable isotope ratios, respectively. 
(e.g. D/H, 18O/16O, 13C/12C, 87Sr/86Sr). 

2. Integrate PFT and isotopic results to quantify the  
behavior of CO2 interaction with brine-rock leading to 
better predictive models beneficial for MVA.

3. Develop MVA strategy to decipher the fate, transport and 
breakthrough of CO2, estimate residence time and 
reservoir capacity, assess the potential leakage
transfer technology to partnerships and industry.
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Candidate MVA Tracers 
(complementing hydrology and geophysics)

Brines: Native non-conservative tracers that respond to changes
pH, alkalinity, electrical conductivity
Cations: Na, K, Ca, Mg, ΣFe, Sr, Ba, Mn
Major anions: Cl, HCO3, SO4, F, Br
Organic acids: acetate, propionate, formate, oxalate, etc.
Other organics:  DOC; methane, CO2, benzene, toluene

Gases: Native conservative tracers or added conservative tracers
Gases: N2, H2, O2, CO2, CO, CH4, C2 – Cn+
Noble gas tracers: Ar, Kr, Xe, Ne, He (and their isotopes)

Perfluorocarbon tracers (PFT’s): 
PMCP, PECH, PMCH, PDCH, PTCH (SF6)

Isotopes: D/H, 18O/16O, 87Sr/86Sr in water, DIC, minerals;
13C/12C in  CH4, CO2, DIC, DOC, carbonates 6



Hydrodynamic: Mixing, dispersion, advection                                fast
Dissolution and/or exsolution at gas/brine/HC interfaces

Diffusion into brine

Sorption onto mineral surfaces

Partitioning into hydrocarbons: liquid or solid (e.g. kerogen)

Microbial activity → biomineralization

Fluid-rock interaction (weathering, digenesis, hydrothermal)

Diffusion in porous/fractured media; minerals                               slow

Possible consequence: chromatographic zoning along flow path
dependent on length and time scales.
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Processes Impacting Tracer Signals
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Benefits of Conservative Tracers – PFTs & SF6

 Non-reactive & non-toxic
 Stable to elevated temperatures up to 500oC
 PFT’s  sensitive at pg-fg, versus isotopes at ppt
 Several PFTs can be quantified in a single analysis
 Can be analyzed in the field or preserved for the lab
 Scalable to thousands of samples
 Easy and cheap; different PFT “suites” used to assess   

multiple breakthroughs – flow regime indicator
 Applicable near-surface or at depth
 Complementary to stable isotopes and geochemistry for 

modeling heterogeneous flow – crucial for MVA 10
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Deploy multiple-tracer suites (others available)
Different molecular weights, solubilities, and structure 
may enable chromatographic separation in reservoirs

Pressure cylinders for sample collection (U-tube) 

PFT Analyses performed in the field or preserved 
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PFTs at Cranfield – F2 Well
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PTCH Tracer Results from Cranfield, MS
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Benefits of Nonconservative Tracers –
Stable Isotopes

( 18O/16O, D/H, 13C/12C, 87Sr/86Sr )

 Naturally occurring in gases, brines, rocks
 Sensitive mass spectrometric methods 
 Kinetic & equilibrium partitioning constrained
 Can be analyzed in the field or the lab
 Assess gas-brine-rock interaction processes
 Assess leakage from reservoir; well bore
 Complementary to gas and brine chemistries
 Proven and established procedures
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Cranfield - production wells
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Pronounced 18O/16O Shifts in Brines

Possible Mechanisms                  18O/16Obrine

depletion    enrichment

 Mixing with groundwater           X

 Evaporation/boiling                                     X

 Reaction with reservoir rock                      X

 Interaction with CO2 X              X
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Oxygen isotope shifts in CO2 and Brine add value to MVA
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Relationship between 18O/16Obrine and CO2

Cranfield 
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Summary of Key Results

Suite of PFTs reveal multiple flow paths; short circuit 
connectivity between injection and monitoring wells

Mixing of CO2 injectate and reservoir CO2 revealed by 
carbon isotopes

Oxygen isotope shifts in CO2 and brine yield estimates of 
saturation conditions – analog to RST

Possible dual source for Sr – formation brine + dissolution 
of sediment (more 87Sr/86Sr in progress)
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Lessons Learned for MVA Applications
Conduct base line characterization of system prior to CO2 injection – gas, 
brine, & solid compositions (mineralogy), and characterize input CO2
chemistry  and isotopes

Down-hole samples preferred over well-head samples; Kuster (USGS); U-Tube 
(LBNL) 

Deploy multiple introduced conservative gas tracers and natural isotopes

Sample prior to and during test at injection well and the monitoring wells; 
frequency dictated by pre-test modeling, timing of actual breakthrough, test 
length and availability

Continue monitoring injection well and monitoring wells after completion of  
test.

Continue long-term monitoring to assess signal decay; leakage in well bore 
above primary sample horizon; leakage to environment

Calibrate and validate models for  CO2 residence time, storage capacity and 
mechanisms (integrate results with hydrology and geophysics) 21



Future Plans

Accelerated
tech transfer

Data integration 
and 

modeling 

Tracer
field

deployment
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Appendix
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Accomplishments and Benefits to Program
• Accomplishments
• Assessing water-mineral-CO2 interactions using geochemical modeling and isotopic 

signatures in baseline, during and post injection for multiple sites and campaigns.

• Determine behavior of perfluorocarbon tracer suites, breakthrough, development of 
reservoir storage over time at multiple sites.

• Delineate CO2 fronts with PFT’s, isotopes and on-line sensors (T, pH, Cond.).

• Established methods, proven successful, inexpensive, ongoing collaborations.

• Procedures for  monitoring, verification and accounting (MVA) as tech transfer for 
larger sequestration demonstrations complementing other sites/partnerships.

• Benefits, 
• Fate, Breakthroughs, Transport, Interactions, MVA, and Technology Transfer.

• Established, successful, inexpensive, Technology Transfer collaborations.

• Lessons Learned of baseline needs and multiple natural and added tracers.

• Publications: 13 journal/book articles and a dozen proceedings papers.

• Education: 4 Students and 2 postgraduates.
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Project Organization

Tommy Phelps
Susan Pfiffner
and team

Dave Cole
and team

DOE-NETL  & 
Partnerships

Collaborators

David Graham, PI
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Gantt Chart

Task Description 2014     2105
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Program Management and Planning (PMP
Compare PFT findings between Cranfield campaigns

Complete gas and fluid isotope geochemistry analyses 
Progress report on collaborations with partnerships

Initiate modeling of isotope behavior Cranfield

Program Management and Planning (PMP
Sampling  Cranfield DAS site and analysis

Initial gas-brine isotope modeling
Summary of Cranfield PFT with comparison to Frio

Summary of Cranfield gas and isotope study compared to Frio
Updated report on tech transfer and new collaborations
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Cranfield, MS - Water Isotopes
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Brine/CO2 Ratios Based on Shifts in 18O/16O
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