Resource Assessment Methods for CO₂ Storage in Geologic Formations

Project Number 1022403

Angela Goodman

Office of Research and Development / National Energy Technology Laboratory

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and
Infrastructure for CCS
August 12-14, 2014

Presentation Outline

Resource Assessments

- CO₂ Storage Method Development for Unconventional Systems, Oil and Gas Systems, and Saline Systems
- Experimental Measurement of Microscopic Displacement Efficiency in Geologic Systems

Geospatial Data Management

- Atlas Development and NATCARB
- Geodatabase Development in Support of Geologic Storage Research (EDX)

Benefit to the Program

Carbon Storage Program Major Goals

Support industry's ability to predict CO₂
 storage capacity in geologic formations to within ±30 percent.

Project Benefits Statement:

 This research project aims at developing and maintaining tools/resources that facilitate regional- and national-scale assessment of carbon storage

Project Overview: Goals and Objectives

Project Objectives.

- Resource Assessments How can available geospatial data be best used to assess storage resource to ±30% accuracy?
 - Develop a Defensible DOE Methodology for Regional Assessments
- Geospatial Data Management (EDX and NATCARB) What spatially related datasets exist in support of carbon storage R&D and can they be provided in a user-friendly system to allow for advanced use and research?
 - Develop and maintain geospatial platforms that support research and assessment and that facilitate preservation and transfer of data (EDX and NATCARB)

Technical Status

- Resource Assessments
 - CO₂ Storage Method Development for
 - Unconventional Systems
 - Oil and Gas Systems
 - Saline Systems
 - Experimental Measurement of Microscopic Displacement
 Efficiency in Geologic Systems

Prospective Storage Resource for CO₂ storage at the regional and national scale at the Exploration Phase.

- Based on physically accessible pore volume without consideration of regulatory or economic constraints.
- broad energy-related government policy and business decisions

Saline Formations

Unmineable Coal Seams

Basalt Formations

Petroleum Industry CO, Geological Storage Capacity Reserves mplementation On Production **Active Injection** Approved for Approved for Development Development Justified for Justified for Development Development Contingent **Contingent Storage** Resources Resources **Development Pending** Development Pending Development Development Unclarified or On Hold Unclarified or On Hold **Development Not Development Not** Viable Viable **Prospective Prospective Storag** Resources Resources Exploration Prospect Qualified Site(s) Lead Selected Areas Potential Sub-Regions Play **Prospective Storage Resources Evaluation Process** roject Sub-class Oualified Site(s) Initial Characterization Selected Areas Site Selection

Organic-Rich Shale

DOE Classification of CO₂ Storage Estimates (2010)

Potential Sub-Regions

Site Screening

Prospective CO₂ Storage Resource Methods

Volumetric approach: geologic properties & storage efficiency

- Method for prospective *CO*₂ *Storage Resource*
 - **Simple Geometric-Based Formula**
 - **Extensive Peer-Review**
 - **Extensive Statistical Rigor**
- Applied by Regional Carbon Sequestration Partnerships
- Refined Estimates in U.S. DOE's Carbon Utilization and Storage Atlas

Geologic Formation

- (1) Saline
- (2) Coalseams
- (3) Oil and Gas

Mass Resource Estimate

$$G_{CO2} = A_t h_g \phi_{tot} \rho E$$

$$G_{CO2} = A_t h_g C_s \rho E$$

$$G_{CO2} = A_n h_n \phi_e \rho E$$

(4) Shale
$$G_{CO2} = [(A_t h_g \phi_{tot} \rho_{CO2r} E_{free}) + (A_t h_g (1 - \phi_{tot}) C_s \rho_{CO2s} E_{sorbed})]$$

Stochastic Treatment of Storage Efficiency

A fraction of the total volume of the formation that will effectively store CO_2 Represents variability in geologic parameters used to calculate G_{CO_2}

$\mathbf{E_{saline}} = \mathbf{E_{An/At}} \; \mathbf{E_{hn/hg}} \; \mathbf{E_{\phi e/\phi tot}} \; \mathbf{E_{v}} \; \mathbf{E_{d}}$

Log Odds Method applied with Monte Carlo sampling

Saline Formation Efficiency Factors				
Lithology	P ₁₀	P_{90}		
Clastics	0.51%	5.4%		
Dolomite	0.64%	5.5%		
Limestone	0.40%	4.1%		

Technical Status

Resource Assessments

- CO₂ Storage Method Development for Unconventional Systems
- Team Members: Isis Fukai¹, Angela Goodman¹, Robert Dilmore¹, Dan Soeder¹, Scott Frailey², Grant Bromhal¹, George Guthrie¹, Traci Rodosta¹

Simplified sketch of an organic-rich shale storage formation showing the portion of the formation that is accessed during CO_2 storage.

Method for Estimating the CO₂ Storage Resource of Organic-rich Shales

*Stimulated Reservoir Volume
^Unstimulated Reservoir Volume

		Tracture	matrix
SRV*	free	✓	√ in φ
	sorbed	Х	✓ in clay & kerogen
USRV^	free	✓	in ϕ
	sorbed	X	✓ in clay & kerogen

fracture

matrix

Methodology for Estimating the CO₂ Storage Resource of Organic-rich Shales

Criteria for CO₂ Storage in U.S. Organic-rich Shale Formations

- (1) Organic-rich shale formations must have a TOC \geq 2.0 wt. % and be methane-bearing. These formations have sufficient volumes of sorptive kerogen & void spaces where CH₄ is able to reside, suggesting they will also be amenable for CO₂ storage.
- (2) Structural, stratigraphic, & hydrodynamic traps (faults, seals, & capillary pressures) must exist in order to prevent the migration of CO₂ into adjacent formations or to the surface.
- (3) The organic-rich shale formation has been, or will be produced for methane before or during implementation of CO₂ storage. This is to reduce the likelihood of formation overpressurization and ensure space is available to allow in-situ methane and fluids to be displaced and/or managed via production.

CO₂ Storage Resource Methodology for Organic-rich Shales

Represents the physically accessible, effective CO₂ storage volume

Volumetric Equation:

Efficiency: fraction of the total formation volume that will be accessed for CO₂ storage

$$\mathbf{E_{free}} = \mathbf{E_{An/At}} \; \mathbf{E_{hn/hg}} \; \mathbf{E_{\phi e/\phi t}} \; \mathbf{E_{V}} \mathbf{E_{d}}$$

$$\mathbf{E_{sorbed}} = \mathbf{E_{An/At}} \; \mathbf{E_{hn/hg}} \; \mathbf{E_{Ce/Ct}} \; \mathbf{E_{V}} \mathbf{E_{d}}$$

Accounts for technical storage limitations, *e.g.* unconstrained **geologic** & **displacement** variables, that may prevent CO₂ from accessing 100% of the theoretical storage volume (*e.g.* Goodman et al., 2011)

Application of Methodology for Estimating the CO₂ Storage Resource of Organic-rich Shales

10 Major Formations Included in Calculation

U.S. Organic-rich Shale Formation Data Incorporated in CO₂ Storage Resource Equation

$$G_{CO2} = A_t h_g \left[\phi_{tot} \rho_{CO2r} E_{free} + (1 - \phi_{tot}) C_s \rho_{CO2s} E_{sorbed} \right]$$

Formation	Total Area (km²)	Gross Thickness (m)	Total Porosity	TOC (%)	Shale Density (g/cm ³)	Langmuir Volume (m³/kg)
Marcellus	246,049	103	0.07	7.3	2.48	0.00852
Barnett	23,310	139	0.05	5.6	2.54	0.00709
Ohio	85,470	135	0.08	3.4	2.60	0.00179
Woodford	28,490	108	0.07	8.3	2.54	0.00933
Haynesville	23,310	70	0.08	2.8	2.60	0.00468
Fayetteville	23,310	52	0.06	6.5	2.54	0.00777
Utica	73,815	133	0.03	2.9	2.69	0.00476
New Albany	22,015	73	0.12	16.0	2.40	0.01592
Lewis	7,122	269	0.04	2.3	2.54	0.00420
Eagle Ford	19,425	65	0.10	4.4	2.60	0.00601

Data Sources: Hill and Nelson, 2000; Curtis, 2002; Nuttall et al., 2005; Braithwaite, 2009; DOE-NETL, 2010; Roth, 2010; Strapoc et al., 2010; Bruner and Smosna, 2011; EIA, 2011; Kulkarni, 2011; Lahann et al., 2011; NY-DEC, 2011; Walls and Sinclair, 2011; Chalmers et al., 2012; Curtis et al., 2012; Jarvie, 2012; Clarkson et al., 2013b; Gasparik et al., 2013; Liu et al., 2013; Ruppert et al., 2013; Yu and Sepehrnoori, 2014

Estimating CO₂ Storage Efficiency of Organic-rich Shales

Probability (p) values: fractions representing the percentage of each parameter that will be utilized for CO₂ storage

P-values must account for several different storage scenarios

annerent storage section				
High and Low P-values Assigned to Efficiency Parameters				
Parameter	Symbol	P ₁₀ (low)	P ₉₀ (high)	
	E An/At	hydraulically stimulated vs unstimulated shale volumes		
Geologic	E hn/hg			
36020820	$E_{\phi e/\phi t}$		osimetry, USANS*	
	E Ce/Ct	Langmuir _{res} / Langmuir _{max}		
Displacement	E_{V}	ľ	on-well	
	E_d		os / infra- cture	

P-ranges are calculated stochastically to produce \mathbf{E}_{free} and $\mathbf{E}_{\text{sorbed}}$ values

GoldSim v. 11(*GoldSim Technology Group*, 2013), Monte Carlo simulation (10,000) & Log-Odds distribution

Shale Storage Efficiency Preliminary					
Percentile:	P ₁₀ (low)	P ₅₀ (mid)	P ₉₀ (high)		
$\mathbf{E}_{ ext{free}}$		In progres	s		

Technical Status

- Resource Assessments
 - CO₂ Storage Method Development for Oil and Gas Systems
 - Team Members: Russell Johns, Nick Azzolina, Dave Nakles, Liwei Li, Saeid Khorsandi, Angela Goodman

Refined Methodology

Production-Based Equation

$$G_{CO2-production} = \frac{A_n \cdot h_n \cdot \phi_e (1 - S_{wi}) \rho_{CO2-standard\ conditions} \cdot E_{oil/gas}}{B_{oil}}$$

Volumetric Equation

$$G_{\text{CO2-reservoir volume displacement}} = A_n \cdot h_n \cdot \phi_{\text{e}}[E_v \cdot E_d] \cdot \rho_{\text{CO2-reservoir conditions}}$$

Approaches to Characterize E_v x E_d

Three Approaches

- Analytical modeling of continuous miscible CO₂
 flood
- Reservoir simulation and reduced order modeling of a next-generation CO₂-EOR scheme with high flood efficiency
- 3. Performance from a set of industry data with regression of those data to predict reservoir performance at higher HCPV CO₂ injection

2 3

Koval/Claridge Approach Repvious 122 Approach Approac

Monte Carlo Simulations varying:

- Oil API Gravity
- Associated gas specific gravity
- Initial Oil Saturation
- Vertical Permeability
- Dykstra-Parsons Coefficient CO2 HPVI up to 5

Simulation of Gravity-Assisted Flood

a reduced-order model (ROM) for continuous CO2 flooding in heterogeneous oil reservoirs

Projection from Production History in Real Fields

Technical Status

- Resource Assessments
 - CO₂ Storage Method Development for Saline Systems
 - Team Members: Angela Goodman, Kelly Rose, Jen Bauer, Corinne Disenhof, Grant Bromhal, Bob Dilmore, and George Guthrie

NETL's Variable Grid Method (VGM)

The VGM is a *flexible method* that allows for the communication of different data and uncertainty types, while still preserving the *overall spatial trends and patterns*

Applications of the VGM at NETL

the base of

CO₂ Storage Assessment **Oriskany Formation**

New approach for defining spatial uncertainty & trends for CO2 Storage estimates

NETL VGM approach can be used to address questions such as:

- Resources evaluation
- Impact assessments
- Identifying Knowledge Gaps
- Understanding trends in the data
- Calculating Project Feasibility

Contact Information:

Jennifer Bauer

jennifer.bauer@contr.netl.doe.gov

Kelly Rose

kelly.rose@netl.doe.gov

Useful Links:

VGM Technology Sheet:

http://www.netl.doe.gov/File%20Library/Business/patents/PON-14-016-variable-grid-method.pdf

VGM Technology Video:

http://youtu.be/9vLa1HM1IKY

Acknowledgements

Thank you to my other developer, Kelly Rose, the 'brains' behind the idea, as well as the NETL Technology Transfer Team for their help developing and submitting the patent, Corinne Disenhof and Angela Goodman for their help with applying the VGM to CO₂ storage estimates, and Aaron Barkhurst and Tim Jones working on the development of the Variable Grid Tool

Notes

A U.S. provisional patent application was filed February 12, 2014 (61/938,862)

New Geospatial Approach for CO₂ Storage Assessment

Developing new geospatial analysis approach to characterize, interpret, and display subsurface geologic characteristics to provide detailed inputs needed for assessing Prospective CO₂
Resource Storage Estimates.

					Clastic	CS	
					P10	P50	P90
Ea/a	Eh/h	Ephi/phi	EV	Ed	0.5%	2.0%	5.4%
	Eh/h	Ephi/phi	EV	Ed	1.6%	4.4%	9.5%
		Ephi/phi	EV	Ed	5.2%	9.9%	17.2%
			EV	Ed	7.4%	14.1%	24.1%
					Dolon	nite	
					P10	P50	P90
Ea/a	Eh/h	Ephi/phi	EV	Ed	0.7%	2.2%	5.4%
	Eh/h	Ephi/phi	EV	Ed	2.0%	5.0%	9.1%
		Ephi/phi	EV	Ed	9.3%	12.7%	16.9%
			EV	Ed	15.7%	20.6%	26.3%
					Limes	tone	
					P10	P50	P90
Ea/a	Eh/h	Ephi/phi	EV	Ed	0.4%	1.5%	4.0%
	Eh/h	Ephi/phi	EV	Ed	1.3%	3.4%	6.9%
		Ephi/phi	EV	Ed	7.2%	10.4%	14.7%
			EV	Ed	10.4%	15.0%	21.0%

Technical Status

Resource Assessments

- Experimental Measurement of Microscopic Displacement Efficiency in Geologic Systems
- Team Members: Dustin McIntyre and Angela Goodman

High Resolution CT Imaging

- Image resolution <5 micron
- Custom X-ray scannable Hassler style core holder
- Pressure and temperature control of confining pressure
- Injection fluid pressure and temperature control
- Micro-displacement efficiency measurement
- Vary brine composition
- Initial saturation composition (Oil/brine/mixed)

Technical Status

- Geospatial Data Management
 - Atlas Development and NATCARB
 - Geodatabase Development in Support of Geologic Storage Research (EDX)

Atlas Development and NATCARB

Atlas Development and NATCARB

LATEST DATASETS

Mixture Propane-Decane Density Data at HTHP

Experimental binary mixture density data for propane (C3) with decane (C10) are reported at temperatures from 320 to 525 K and pressures to 265 MPa. These data extend the literature density database for C3-C10 binary mixtures ...

2 days ago

- An online platform for rapid and efficient access to priority datasets
- Provides an opportunity for researchers to share and "publish" online datasets & data-driven products
- A secure environment for multi-organizational research teams to share, build, and collaborate in a common workspace
- Online tool to disseminate data, information, and results from DOE's Fossil Energy intramural research portfolios

https://edx.netl.doe.gov/

Accomplishments to Date

- Draft of new methodology for accessing storage potential in organic-rich shale
- Draft of new methodology for accessing storage potential in conventional oil reservoirs
- Development of the VGM flexible method that allows for the communication of different data and uncertainty types, while still preserving the overall spatial trends and patterns
- Develop a New Viewer for NatCarb
- EDX Development- Coordination and Colloboration Tool --- Online tool to disseminate data, information, and results from DOE's Fossil Energy intramural research portfolios

Summary

- Key Findings
- Resource Assessments
 - Develop a Defensible DOE Methodology for Regional Assessments
- Geospatial Data Management (EDX and NATCARB)
 - Develop and maintain geospatial platforms that support research and assessment and that facilitate preservation and transfer of data (EDX and NATCARB)
 - Future Plans
 - Develop Defensible DOE Methodology for Regional Assessments
 - Expand to Include Stochastic Approach for Key Parameters
 - Expand Methodology to Include Geospatially Variable Key Parameters
 - EDX and NATCARB : Develop and maintain geospatial platforms that support research and assessment and that facilitate preservation and transfer of data

Appendix

Organization Chart

Task 4.0 Resource Assessments and Geospatial Resources

- Subtask 4.1 Resource Assessments (TTC: Goodman)
- Sub-subtask 4.1.1 Methodology for Assessment of Unconventional Systems (Goodman, NETL)
- Sub-subtask 4.1.2 Methodology for Assessment of Oil and Gas Systems (Dilmore, NETL; Johns, PSU)
- Sub-subtask 4.1.3 Methodology for Assessment of Saline Systems(Goodman & Rose, NETL)
- Sub-subtask 4.1.4 Experimental Measurement of Microscopic Displacement Efficiency in Geologic System (McIntyre & Goodman, NETL)

Subtask 4.2 Geospatial Data Management (TTC: Soeder 4.2.1/Rose 4.2.2)

- Sub-subtask 4.2.1 Atlas Development and NATCARB (TTC: Soeder)
- Sub-sub-subtask 4.2.1.1 NATCARB Database and Viewer Development (Carr, WVU)
- Sub-sub-subtask 4.2.1.2 Update the Carbon Storage Atlas of the United States and the North American Carbon Atlas (Soeder, NETL)
- Sub-subtask 4.2.2 Geodatabase Development in Support of Geologic Storage Research (Rose, NETL)
- Sub-sub-subtask 4.2.2.2 Evaluation and if Appropriate Development of an ORD CO₂ Storage Program EDX Portfolio
- Sub-sub-subtask 4.2.2.3 EDX operations support for collaborative workspace development for CO₂ Storage intramural and extramural projects as requested. To create a collaborative workspace the administrator of the space is required to have a contr.netl.doe.gov or .netl.doe.gov email address however members approved by the workspace administrator with valid EDX accounts can be from outside entities. Thus, EDXsupport@netl.doe.gov will be on hand to support the development, maintenance and improvement of these spaces in support of CO₂ Storage R&D in FY14.
- Sub-sub-subtask 4.2.2.4 Additional support by the EDX Team for key development and potential integration with outside partners (e.g., PNNL GS3 system) will be supported in FY14 but will be limited by the amount of funding available versus the level of support and development required on a request-by-request basis.

Milestone Identifier	Title	Planned Date	Verification Method
Task 4.0 Resource	Assessments and Geospatial Resources		
M1.14.4.A	Provide draft methodology products for oil and gas formations.	03/30/14	Draft report

Gantt Chart

Bibliography

- Bauer, J., and Rose, K., "The Variable Grid Method: An Approach for Simultaneously Visualizing Spatial Data Trends and Uncertainty," Carbon Storage Technical Report Series (TRS), under development.
- Dilmore, R., Johns, R., Azzolina, N., Nakles, D., and Goodman, A., "Proposed Methodology for Assessment of CO₂ Storage Potential in Oil Reservoirs," under internal review.
- Fukai, I., Goodman, A., Soeder, D., Strazisar, B., Dilmore, R., Bromhal, G., Frailey, S., Rose, K., Rodosta, T., and Guthrie, G., "Current Progress on the DOE-NETL Methodology for Assessing CO₂ Storage Potential of Organic-Rich Shale," under internal review.
- Popova, O.H., Small, M.J., McCoy, S.T., Thomas, A.C., Rose, K., Karimi, B., Carter, K., and Goodman, A., "Spatial Stochastic Modeling of Sedimentary Formations to Assess CO₂ Storage Potential," *Environmental Science & Technology*, in press, 2014.