Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO₂ Storage Efficiency: A Reservoir Simulation Approach (DEEP)

Project Number: DE-FE0009612

Roland Okwen, Scott Frailey, and Hannes Leetaru Illinois State Geological Survey

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 12–14, 2014

Acknowledgments

- The Midwest Geological Sequestration Consortium (MGSC) is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute.
- The MGSC is a collaboration led by the state geological surveys of Illinois, Indiana, and Kentucky.
- Through a university grant program, Landmark Software was used for the reservoir and geologic modeling.

Presentation Outline

- Project benefit to CO₂ program
- Project goals and objectives
- Project approach
- Outcomes
- Accomplishments to date
- Summary

Benefit to the Program <u>CARBON STORAGE PROGRAM MAJOR GOALS</u>

- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Develop and validate technologies to ensure 99 percent storage permanence.
- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.

BENEFITS STATEMENT

This project will address Area of Interest 3, Field Methods to Optimize Capacity and Ensure Storage Containment. The identification of field techniques to improve storage efficiency above the baseline CO_2 storage efficiency in specific geologic formation classes of different depositional environments identified by DOE as promising storage formations will provide better regional assessment estimates and site screening criteria. The research will contribute to the program's effort of estimating <u>CO₂ storage capacity in geologic formations</u>.

Project Overview:

Goals

- Quantify storage efficiency for different depositional systems;
 - DOE's "High" and "Medium" storage potential ratings
- Identify methods to
 - Improve *E*;
 - Control CO₂ plume footprint

Project Overview: Objectives

- Select Illinois Basin (ILB) formations representing different depositional systems
- Develop rigorous geologic and geostatistical models of selected formations
- Conduct numerical simulations
 - Estimate E
 - Depict CO₂ plume distribution within formation flow units
 - Determine depositional system-based strategies to improve *E*

Background

- CO₂ storage potential Matrix (NETL, 2010)
- Large Scale, Small Scale and Characterization are DOE defined groups

Matrix of Field Activities in Different Depositional Environment

Depositional Environment		Н	igh Potential			Medium Potential					Low or Unknown Potential		
	Deltaic	Shelf Clastic	Shelf Carbonate	Strandplain	Reef	Fluvial Deltaic	Eolian	Fluvial & Alluvial	Turbidite	Coal	Basalt (LIP)		
Large Scale	-	1	-	-	1	3	-	1	-	-	-		
Small Scale	3	2	4	1	2	-	-	2	-	5	1		
Characterization	1	-	8	6	-	3	3	2	2	—	1		

Approach for each depositional environment

Depositional Environments

Depositional Environment	Storage Potential (DOE's Rating)	ILB Formation	Other US Basin formations
Deltaic	High	Benoist	Frontier Formation (Rocky Mountain basins)
Shelf Clastic	High	Cypress	Tapeats Sandstone (Colorado Plateau) Hamilton and Martinez (Sacramento Valley Basin)
Shelf Carbonate	High	Ste. Genevieve	Naco and Martin (Colorado Plateau); Knox (Illinois and Michigan Basins); Arbuckle (Ozark Plateau)
Strandplain	High	Upper Mt. Simon	Fleming Group (Gulf of Mexico Basin); Pottsville, Parkwood, and Hartselle (Black Warrior Basin)
Reef	High	Racine	Cisco-Canyon (Permian Basin)
Fluvial Deltaic	Medium	Bridgeport	Domengine (Sacramento Valley Basin); Fleming Group
Fluvial & Alluvial	Medium	Lower Mt. Simon	Tuscaloosa (Gulf Coast Basin); Stockton and Passaic (Newark Basin)
Turbidite	Medium	Carper	Puente (Los Angeles Basin)

Conceptual and Geocellular Models

- Conduct geologic mapping
 - Available Data
 - Logs: spontaneous potential, neutron-density, openhole, and casedhole
 - Core
 - Outcrops
- Results
 - Cross sections
 - Isopach maps
 - Structure maps
 - Block diagram of the depositional environment
- Software: Geographix and Petra

Conceptual and Geocellular Models (cont.)

- Conduct geostatistical analyses using
 - Conceptual geologic model
 - Digitized logs
 - Core data
 - Surface maps
- Build geocellular model (4 distributions)
 - Porosity
 - Permeability
 - Thickness
 - Facies
- Flat, no structure
- Software: Isatis

Example: Shelf Carbonate

Model Permeability distribution (0.1–1000 mD)

9/11/2014

Example: Deltaic

Increasing relative tidal power

- Permeability distribution (5-300 mD)
- Model area covers isopach map (Seyler et al., 2012)

Reservoir Simulations

Input and initial conditions

- Reservoir and PVT properties
- End-point saturations and relative permeabilities
- Initial conditions

 $P_{res} > P_{CO_{2,crit}}$: 1100 psi $T_{res} > T_{CO_{2,crit}}$: 90 °F

• Injection rate :

18,854 Mscf/d (1 tonne/d)

- No pressure constraint
- Software: Landmark Nexus

End-point saturations & rel. permeability

Parameter	Sandstone	Limestone
S _{wr}	0.50	0.50
k _{rw,max}	1.00	1.00
S _{g,c}	0.30	0.20
k _{rg, max}	0.25	0.25
m	2.00	2.00
n	3.00	4.00

Fig.: Sandstone relatively curve

Reservoir Simulations, cont.

Storage Efficiency (E)

 $\boldsymbol{E} = \frac{\boldsymbol{V}_{\boldsymbol{C}\boldsymbol{O}_2}}{\boldsymbol{V}_p}$

- V_{co2}: reservoir pore volume contacted by CO₂.
- V_p : pore volume available for storage

Warmer colors indicate higher CO₂ saturation and blue indicates water

Reservoir Simulations

• Sensitivity studies

- Infinite acting aquifer (analytical vs. numerical model)
 - Wellblock permeability
 - Aquifer permeability averaging method
 - Water influx vs outflux

Aquifer permeability averaging method

Aquifer strength on BHP

Fluid outflux vs. influx

- Average reservoir k closely exhibit infinite-acting aquifer behavior.
- Outflux-Influx ratio approaches1.0 over time.

Reservoir Simulations

- Sensitivity studies (continued)
 - End-point saturations and relative permeabilities
 - S_{wirr} : irreducible brine saturation
 - S_{gc} , : critical CO₂ saturation
 - $k_{rg,max}$: maximum CO₂ relative permeability

End-point Saturations and relative permeability Effects

- E declines as S_{wirr} or k_{rg,max} increase
- E increases with S_{gc}

Example: Storage Efficiency profile

9/11/2014

20

Example: shelf carbonate

Cells: 1,209,748

CO₂ plume distribution (3 year\$)

Example: Fluvial Deltaic

- Channel System
- Cells: 127,500, k_{av}: 100 md

CO₂ plume distribution (\$0 year)

Illinois State Geological Survey www.CO2efficiency.org

9/11/2014

Normalize baseline efficiencies Normalize for effect of relative permeability and end-point saturations

(2) $E_v = \frac{E}{\overline{S}_g} k_{rg} (\overline{S}_g)$ (3) $E_v = \frac{E(1-S_{wirr})}{\overline{S}}$ (4) $E_v = \frac{E(1-S_{wirr}-S_{gc})}{\overline{S}}$ (5) $E_v = \frac{E(1-S_g)}{\overline{S}_g}$ (6) $E_v = \frac{E(1-S_{wirr})}{\overline{S} = S_{vrr}}$

Illinois State Geological Survey www.CO2efficiency.org

9/11/2014

Outcomes

Normalize baseline efficiencies

Depositional Environment		Baseline	<i>E_V</i> (%)	% Change (effect of		
	ILB formation	Stratigraphic	Structural	geologic structure)		
Deltaic	Sandstone	23 — 41	23 — 43	0.0 — 4.8		
Shelf clastic	Sandstone	17 — 41	20 — 52	18 — 26		
Shelf carbonate	Limestone	9.5 — 26	10 — 28	5.3 — 7.7		
	Dolomite	7.5—19	9.0 — 19	0.0 — 20		
Fluvial deltaic	Sandstone	36 — 52	36 — 51	0.0 — 1.9		
Strandplain	Sandstone	16 — 32	30 — 43	34 — 88 [*]		
Reef	Limestone	14 — 53	13 — 56	5.7 — 7.1		
Fluvial and alluvial	Sandstone	11 — 52	17 — 58	12 — 55		

*Large structure, low dip angle and thick reservoir

Min: Median: Max 0% : 7.4% : 88%

E and E_v increase with size of geologic structure.

Storage Potential vs. Efficiency Matrix CO₂ storage potential Matrix (NETL, 2010)

CO₂ storage potential Matrix (NETL, 2010)

Geologic Formation Classes	gic Formation High Potential					Medium Potential					
	Deltaic	Shelf Clastic	Shelf Carbonate	Strandplain	Reef	Fluvial Deltaic	Eolian	Fluvial & Alluvial	Turbidite		
Ranking	1	2	3	4	5	6	7	8	9		

CO ₂ storage Efficiency Matrix										
Geologic Formation Classes	Formation High F			h Potential				Medium Potential		
	Deltaic	Shelf Clastic	Shelf Carbonate	Strandplain	Reef	Fluvial Deltaic	Eolian	Fluvial & Alluvial	Turbidite	
Ranking	2	4	8	5	6	1		7	3	

Classification is based on E_v of simulation using stratigraphic geologic models

Note: High $E \neq$ high storage capacity (potential).

 \bigcirc

Summary

- Key Findings
 - Formations studied exhibit a mixture of depositional environments with one having a dominating presence.
 - Depositional systems in cratonic and non-cratonic US Basins exhibit similar characteristics but differ in scale of geologic features.
- Lessons Learned
 - Effect of geologic structure on storage efficiency is dependent on:
 - Size
 - Dip angle
 - Reservoir thickness
- Future Plans
 - Developed database tool to estimate *E* from simulation data.

Midwest Geological Sequestration Consortium <u>www.sequestration.org</u>

ISGS Staff

- Reservoir Engineers:
 - Roland Okwen
 - Scott Frailey
- Sub-contractor (Schlumberger) :
 - John Grube
 - Beverly Seyler
- Database specialist
 - Damon Garner

Geologists:

- Hannes Leetaru
- Yaghoob Lasemi
- Nathan Webb
- James Damico
- Charles Monson
- Editor:
 - Dan Klen

These slides will not be discussed during the presentation, but are mandatory

Organization chart

Gantt Chart

	0	Task Name	Start 🖕	Finish 🖕	% Complete 🖕	Sep Oct Nov Dec J	2013 an Feb Mar Apr May Jun Jul	Aug Sep Oct Nov Dec	Jan Feb Mar Apr	2014 r May Jun Jul Aug Sep	Oct Nov Dec J
1	ø	* Task 1 – Project Management, Planning, and Reporting	Mon 10/1/12	Wed 12/31/14	55%						
43	v Ø	* Task 2 – Geologic Formation Screening	Mon 10/1/12	Thu 2/28/13	100%		—				
53	v 🔌	Milestone: Formation List to NETL Capacity Team for Review	Thu 2/28/13	Thu 2/28/13	100%						
54	√	Deliverable: Task 2 Report	Fri 8/30/13	Fri 8/30/13	100%			8/30			
55	Ø	* Task 3 - Geology and Geologic Modeling	Mon 10/1/12	Tue 12/31/13	80%				7		
67		Milestone: Complete contruction og geologic models	Tue 12/31/13	Tue 12/31/13	0%				12/31		
68		Deliverable: Task 3 Report	Fri 1/31/14	Fri 1/31/14	0%				1/31		
69	ø	* Task 4 – Geostatistical Analyses and Geocellular Modeling	Mon 10/1/12	Wed 4/30/14	60%						
81		Milestone: Complete constuction of geocellular models	Wed 4/30/14	Wed 4/30/14	0%					↓ 4/30	
82		Deliverable: Task 4 Report	Mon 6/30/14	Mon 6/30/14	0%					6/30	
83	ø	* Task 5 – Reservoir Flow Modeling	Mon 10/1/12	Mon 6/30/14	20%	V					
110		Milestone: Complete reservoir simulations	Mon 6/30/14	Mon 6/30/14	0%					6/30	
111		Deliverable : Task 5 Report	Tue 7/1/14	Tue 7/1/14	0%					♦ 7/1	
112	ø	* Task 6 – Interpretation and Analyses of Modeling Results	Fri 3/1/13	Tue 9/30/14	10%		V				,
115		Milestone: Finalize estimates of storage efficiency by geologic classification	Tue 9/30/14	Tue 9/30/14	0%					\$	9/30
						-					
						-					

Bibliography

- Webb, N.D., and J.P. Grube, 2014, The Mississippian Cypress Sandstone: A potential CO₂ EOR target in the Illinois Basin: poster presented at the North Central Geological Society of America meeting, April 24–25.
- Grigsby, N., and J.D. Damico, 2014, A new method of utilizing old geophysical log suites to create realistic geocellular models: an example from the Lawrence oil field in the Illinois Basin: poster presented at the North Central Geological Society of America meeting, April 24–25.
- 3) Okwen, R., F. Yang, and S. Frailey, accepted (in prep), Effect of geologic depositional environment on CO₂ storage efficiency: Energy Procedia.
- Okwen, R., C. Monson, Y. Lasemi, and N. Grigsby, accepted (in prep), Quantifying CO₂ storage efficiencies of geologic depositional environments: poster to be presented at the 42nd annual AAPG Eastern Section meeting, London, ON, September 27–October 1, 2014.

Bibliography, cont.

- 6) Webb, N.D., J.P. Grube, C.S. Blakley, B. Seyler, 2013, The importance of geologic reservoir characterization in the successful application of CO₂ enhanced oil recovery and storage programs: Examples from Carboniferous fluvio-tidal deposits of the Illinois Basin, USA: poster presented at the 10th International Conference on Fluvial Sedimentology, Leeds, UK, July 14–19.
- Okwen, R., J.D Damico, N. Webb, Y. Lasemi, C. Monson, and N. Grigsby, 2014, Assessing depositional environments in the Illinois Basin: poster presented at the annual Illinois Oil and Gas Association meeting, March 6–7.
- 8) Okwen, R., S. Frailey, and H. Leetaru, 2013, Assessing depositional environments to improve CO₂ storage efficiency, poster presented at the US DOE Carbon Storage R&D Project Review Meeting, Pittsburgh, PA, August 20–22

Outcomes

Baseline Storage efficiencies

Depositional	Lithology	Baseline	% Change	
Environment		Stratigraphic	Structural	
Deltaic	Sandstone	9.5 — 18	10 — 20	5.3 — 11
Shelf clastic	Sandstone	5.6 — 15	6.6 — 19	18 — 26
Shelf carbonate	Limestone	3.1 — 9.0	3.3 — 9.9	6.5 — 10
	Dolomite	3.0 — 8.2	3.8 — 7.5	8.0 — 27
Fluvial deltaic	Sandstone	13 — 22	15 — 22	0.0 — 15
Strandplain	Sandstone	6.1 — 13	11 — 17	31 — 80 [*]
Reef	Limestone	4.8 — 19.7	4.7 — 21.3	2.0 — 8.1
Fluvial and alluvial	Sandstone	8.0 — 19	9.9 — 22	16 — 24
Turbidite	Fine Sandstone	6.5 — 24	7.0 — 25	4.2 — 7.6

*Large structure

Illinois State Geological Survey www.CO2efficiency.org

9/11/2014