2014 NETL Annual Review

Reservoir Pressure Management

Thomas A. Buscheck, Yunwei Sun, Yue Hao, and William Bourcier (presenter)

Lawrence Livermore National Laboratory, P.O. Box 808, L-223, Livermore, CA USA bourcier1@llnl.gov ; buscheck1@llnl.gov

August 2014 • Pittsburgh, PA

This work was sponsored by the US DOE National Energy Technology Laboratory and the US DOE Geothermal Technologies Program

LLNL-PRES-658052

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

DEPARTMENT OF

Benefit to the program

- Project benefits statement
 - This project provides an analysis of extraction of formation fluids as a method for increasing the storage capacity and reducing the risk of failure at carbon storage sites. Our results are aimed at enabling a cost-benefit analysis of fluid extraction at carbon sequestration sites and recommending methods for applying the technology.
- Program goals being addressed
 - Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
 - Develop and validate technologies to ensure 99 percent storage permanence
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
 - Develop Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization; public outreach; well management activities; and risk analysis and simulation

Overview and Accomplishments

- We are investigating a range of pressure management approaches
 - single-mode, brine-extraction and CO₂-injection wells [... FY13]
 - dual-mode, brine extraction/CO₂-injection wells [FY14 ...]
- We continue to consider benefits/needs
 - suppressed CO₂ and brine leakage and migration
 - hydraulic isolation from neighboring subsurface activities [... FY13]
 - reduced pore-space competition and AOR [... FY13]
 - reduced risk of caprock fracturing and induced seismicity [FY14 ...]
- Past pressure management studies have emphasized
- large well fields comprised of single-mode wells, including
 - ✓ brine-extraction wells
 - \checkmark CO₂-injection wells
- wide well spacing between extraction and injection wells, which assumes/requires homogeneous reservoirs with
 - ✓ good lateral hydraulic communication between wells
 - large compartment volumes

Overview (continued)

- We are now addressing the efficiency of brine management operations and strategies for a field demonstration
 - reduce well cost (dual-mode wells = fewer wells)
 - reduce brine extraction cost
 - brine production by artesian flow (reduce brine lifting cost) [... FY13]
 - ✓ pre-injection brine extraction (increases benefit/cost ratio) [FY14 ...]
 - utilizing dual-mode wells for
 - pilot studies
 - ✓ reservoir diagnostics [FY15...]
 - ✓ site screening [FY15...]
 - ✓ pressure-management planning [FY15...]

Past work has considered well fields with *single-mode* wells, including brine-extraction and CO₂-injection wells

- (a) Achieving early-time pressure relief may require close well spacing
- (b) Breakthrough of CO₂ at brineextraction wells will limit how long they can provide pressure relief
- (c) Additional brine-extraction wells may need to be staged for ongoing pressure relief
- A monitoring well may be completed in the storage reservoir to assess plume migration
- A monitoring well may be completed in an overlying formation to assess caprock leakage

Dual-mode brine-extraction/CO₂-injection wells can reduce the total number of wells required for pressure management

- (a) Pre-injection brine extraction provides early-time pressure relief where it is most needed
- (a) Early-time pressure relief allows greater spacing between CO₂-injection and brine-extraction wells
- (b,c) Additional dual-mode wells may be staged as needed for ongoing pressure relief
- preferably completed down-dip of the primary dual-mode well
- A monitoring well may be completed in an overlying formation to assess caprock leakage
- The total number of wells is significantly reduced

Small reservoir compartments can result in rapid pressure buildup

Lawrence Livermore National Laboratory

7 IL

- Small reservoir compartments can result in rapid pressure buildup
- Extract 1622 acre-ft (2 MT) of brine in 1 year

Lawrence Livermore National Laboratory

- Small reservoir compartments can result in rapid pressure buildup
- Extract 1622 acre-ft (2 MT) of brine in 1 year
- Extract 1622 acre-ft (2 MT) of brine in 2 years
- Pressure drawdown is slightly less for the smaller brine extraction rate
 Time to reach threshold ΔP is similar for these two cases
 Pre-injection pressure response is diagnostic of pressure behavior during
- diagnostic of pressure behavior during injection

Notes: compartment area = 1.6 km²; compartment thickness = 120 m; for brine extraction: 1x = 1 MT/yr and 2x = 2 MT/yr

 CO_2 injection rate = 1 MT/yr 40

Lawrence Livermore National Laboratory

- Small reservoir compartments can result in rapid pressure buildup
- Extract 3244 acre-ft (4 MT) of brine in 2 years

Lawrence Livermore National Laboratory

- Small reservoir compartments can result in rapid pressure buildup
- Extract 3244 acre-ft of brine in 2 years
- Extract 3244 acre-ft of brine in <u>4 years</u>
- Pressure drawdown is slightly less for the smaller brine extraction rate
- Time to reach threshold ∆P is similar for these two cases
- Pre-injection pressure response is diagnostic of pressure behavior during injection

Notes: compartment area = 1.6 km^2 ; compartment thickness = 120 m; for brine extraction: 1x = 1 MT/yr and 2x = 2 MT/yr

Lawrence Livermore National Laboratory

Time to attain an overpressure $\triangle P$ of 10 MPa increases with reservoir compartment area and thickness

- Initially, time to ∆P = 10 MPa increases linearly with compartment area and thickness, indicating that it is entire controlled by compressibility
- At later time, this dependence steepens as caprock leakage increasingly influences pressure relief

CO_2 injection rate = 1 MT/yr

Lawrence Livermore National Laboratory

Time to attain an overpressure ΔP of 10 MPa increases with reservoir compartment area and thickness

Time to $\Delta P = 10$ MPa is weekly dependent on reservoir permeability

 CO_2 injection rate = 1 MT/yr

Time to attain an overpressure ΔP of 10 MPa increases with reservoir compartment area and thickness

Thus, pressure buildup history depends primarily on reservoir compartment volume and leakage through the caprock and, possibly, sealing faults

CO_2 injection rate = 1 MT/yr

Underpressure caused by pre-injection extraction is the mirror image of overpressure driven by CO_2 injection CO_2 injection rate = 1 MT/vr

- Overpressure history for a single-mode CO₂-injection well is the mirror image of underpressure history for a corresponding dual-mode well
- e.g., 10 MPa of underpressure from 4 yr of pre-injection brine extraction corresponds to 12 to13 MPa of overpressure at 3 yr for a single-mode CO₂-injection well and 4 MPa of overpressure for a dual-model well (8 to 9 MPa of pressure relief)
- For an initial reservoir pressure of 22 MPa and temperature of 100°C, CO₂ density is 70% that of brine density
- 4 years of 1X pre-injection brine extraction is equivalent to delaying CO₂ injection for 2.8 yr
- Early time pressure relief can be substantial
- Ongoing pressure relief can be achieved using additional dual-mode wells

Note: brine extraction cases

extract 1 MT/yr of brine for 4 yr

Summary and Conclusions

- Pressure management can be achieved using a small number of dual-mode brine-extraction/CO₂-injection wells, providing
 - pressure relief where it is needed most
 - reservoir diagnostics to help guide future well-field operations
 - an early source of brine for beneficial use
 - a cost-effective approach for a pilot-scale project
- A monitoring well in an overlying formation can provide
 - diagnostics about the contribution of caprock leakage to pressure relief
 - be used for assessment of the risk of caprock leakage
 - help guide future well-field operations
 - compartmentalized reservoirs
 - poor lateral hydraulic communication
 - diagnose reservoir characteristics prior to CO₂ injection
- Future work
 - consider a wide range of scenarios for leakage through the caprock and sealing faults
 - conduct site-specific analyses of well-field operations, using staged dual-mode wells

LLNL publications related to pressure management

- Buscheck, T.A, Sun, Y., Hao, Y., Wolery, T.J., Bourcier, W.L., Tompson, A.F.B., Jones, E.D., Friedmann, S.J., and Aines, R.D., 2011. Combining brine extraction, desalination, and residual-brine reinjection with CO₂ storage in saline formations: Implications for pressure management, capacity, and risk mitigation. *Energy Procedia* **4**: 4283–4290.
- Buscheck, T.A., Sun, S., Chen, M., Hao, Y., Wolery, T.J., Friedmann, S.J., and Aines, R.D., 2012. Active CO₂ reservoir management for CO₂ capture, utilization, and storage: An approach to improve CO₂ storage capacity, and to reduce risk. CMTC 151746, Proceedings for the Carbon Management Technology Conference, 7–9 February, 2012, Orlando, FL, USA.
- Buscheck, T.A., Sun, Y., Chen, M., Hao, Y., Wolery, T.J., Bourcier, W.L., Court, B., Celia, M.A., Friedmann, S.J., and Aines, R.D., 2012. Active CO₂ reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. *International Journal of Greenhouse Gas Control* **6**: 230–245.
- Buscheck, T.A., Elliot, T.R., Celia, M.A., Chen, M., Sun, Y., Hao, Y., Lu, C., Wolery, T.J., and Aines, R.D., 2013. Integrated geothermal-CO₂ reservoir systems: Reducing carbon intensity through sustainable energy production and secure CO₂ storage, *Energy Procedia*, **37**: 6587–6594.
- Buscheck, T.A., White, J.A., Chen, M., Sun, Y., Hao, Y., and Bielicki, J.M., 2014. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs, International Conference on Greenhouse Gas Technologies (GHGT-12), 5–9 October, 2014, Austin, TX, USA.
- Chen, M., Buscheck, T.A., Wagoner, J.L., Sun, Y., White, J.A., Chiaramonte, L., and Aines, R.D., 2013. Analysis of fault leakage from Leroy underground natural gas storage facility, Wyoming, USA, Hydrogeology Journal, doi: 10.1007/s10040-013-1020-I.
- Court, B., Elliot, T. R., Dammel, J., Buscheck, T.A., Rohmer, J., Celia, M.A., 2011a. Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO₂ sequestration, Special Issue on Carbon Capture and Storage (CCS) "Five years after the IPCC Special Report on CCS: state of play" *Mitigation and Adaptation of Strategies for Global Change Journal*, DOI 10.1007/s11027-011-9314-x.
- Court, B., Bandilla, K., Celia, M.A., Buscheck, T.A., Nordbotten, J., Dobossy, M., and Jansen, A., 2012. Initial evaluation of advantageous synergies associated with simultaneous brine production and CO₂ geological sequestration, *International Journal of Greenhouse Gas Control* **8**: 90–100.
- Elliot, T.R., Buscheck, T.A., and Celia, M.A., 2013. Active CO₂ reservoir management for sustainable geothermal energy extraction and reduced leakage, *Greenhouse Gases: Science and Technology*, **3** (1): 50–65; DOI: 1002/ghg.
- Lu, C., Sun, Y., Buscheck, T.A., Hao, Y., White, J.A. and Chiaramonte, L. 2012. Uncertainty quantification of CO₂ leakage through a fault with multiphase and nonisothermal effects, *Greenhouse Gases: Science and Technology*, **2** (6): 445–459.

Organization Chart

Lawrence Livermore National Laboratory

Project Timeline

Taaka				
1 0383		Start	Duration	Finish
Brine Disposition	1			
Brine characterization	1.1	0	6	6
Desalination technology evaluation	1.2	6	10	16
Treatment cost analysis	1.3	16	10	26
Reservoir Management	2.0	0	12	12
integration with $CO2$ injection	22	12	12	24
	2.2	24	12	26
opumization	2.3	24	12	30
Analysis for limited number of wells	2.4	36	4	40
Site Demonstration	3.0 3.1	40	6	46
Modeling to support site	3.2	46	12	58
demonstration	0.2			
Setup and site work	3.3	52	12	64