

International Monitoring Updates from IEAGHG Monitoring Network

US DOE Carbon Storage R&D Project Review Meeting

12th – 14th August 2014 Pittsburgh

Panel

Don White, Geological Survey of Canada, NRCAN

Katherine Romanak, BEG University of Texas at Austin

- Ian Wright, Director Science and Technology,
 National Oceanography Centre, Southampton UK
- Tim Dixon, IEAGHG

Monitoring Network and Modelling Network - Combined Meeting

Hosts: West Virginia University

Sponsors: West Virginia University National Research Center for Coal and Energy, West Virginia Division of Energy, Battelle, Southern States Energy Board

4th – 8th August 2014 Morgantown

Networks' Objectives –

- Modelling Network: To provide an international forum for technical experts to share knowledge and ideas, promoting collaborative projects and contributing to the development of storage performance assessment.
- Monitoring Network: Overall aim: To facilitate the exchange of ideas and experiences between experts in the monitoring of CO₂ storage, and to promote the improved design and implementation of monitoring programmes.
- Specific aims and objectives:
 - Assess new technologies and techniques
 - Determine the limitations, accuracy and applicability of techniques
 - Disseminate information from research and pilot storage projects
 - Develop extensive monitoring guidelines
 - Engage with relevant regulatory bodies
 - Monitoring Selection Tool http://www.ieaghg.org/index.php?/ccs-resources.html

Technical Sessions relating to Monitoring

- Detection and Monitoring of Migration and Leakage
- Detection and Quantification of Leakage
- Offshore
- Microseismicity
- How can Modelling Improve Monitoring
- Cost-effectiveness

Some Specific Key Messages

- Tracers most useful for residual saturation (containment) -Australia
- Marine water column improved approach based on processbased method - Japan
- Complexity at shallow depth at CO2Fieldlab Norway
- New data on marine shallow subsurface and water column from QICS - UK
- P-cable providing high resolution data on shallow overburden -USA
- FutureGen2 and ADM first permits precedent USA

Some General Key Messages and Conclusions

- Pressure monitoring likely to be early indicator of leakage; we are getting more out of pressure gauge data
- Seismic monitoring applied offshore and onshore example of cheaper offshore per unit area
- Storage monitoring of CO2 EOR is different from saline storage
- Microseismic benefits; data from current projects is reducing uncertainty - and identifying uncertainty
- Monitoring to modelling iteration is essential and proving effective

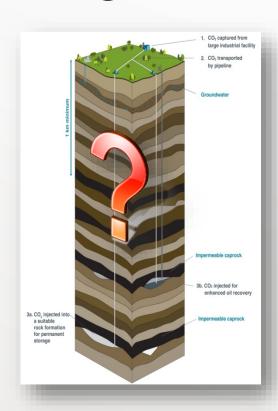
Some Gaps

- Surface monitoring for leak detection large area with high sensitivity
- Will introduced tracers make it to the surface?
- Monitoring fracture zones and migration mechanism/process
- Secondary accumulations at shallower depths
- Baseline for CO2 EOR projects difficult to define
- Need (shallow) monitoring techniques which are continuous, real time, accurate, and cost effective – problems with accuracy of available sensors – benchmarking of available sensors
- Monitoring for commercial-scale deployment: what will be the right balance between cost and sensitivity to meet regulatory requirements

Geophysical Monitoring: Deep CO₂ – In or Near the Storage Complex

- Pressure measurements
 - Reservoir performance & overburden monitoring
 - Great value and relatively inexpensive
- Time-lapse surface seismic
 - Best demonstrated for large-scale injection (Snohvit, Sleipner, Ketzin Weyburn)
 - But, expensive & has some "blind" spots (small volumes or thin zones)
 - New developments:
 - dedicated surface arrays (Aquistore, Australia)
 - continuously operating low-impact sources (Spain, Japan/Aquistore)
 - o improved sensitivity & reduced cost
- Time-lapse vertical seismic profiles
 - Suited for "near wellbore" environment (Decatur, Citronelle, Bell Creek, Aquistore, Weyburn); repeatability and deployment issues persist
 - New developments: Distributed Acoustic Sensing (Citronelle, Otway, Quest, Aquistore)

Geophysical Monitoring- Deep CO₂



- Passive seismic monitoring (widespread)
 - microseismicity (local processes associated with pressure transients)
 - potential induced seismicity (fault reactivation)
- InSAR (In Salah, Quest, Decatur, Aquistore)
 - pressure plume monitoring
 - covers large area at reasonable cost
 - but, needs good geomechanical model
- Other geophysics (surface and downhole):
 - gravity (Sleipner, Aquistore, FutureGen, MRCSP)
 - electrical (sensitive to dissolved CO₂! Ketzin, Nagaoka, Aquistore)
 - Electromagnetic (CCP3-Aquistore)
- Quantification
 - requires integration of monitoring data and modelling

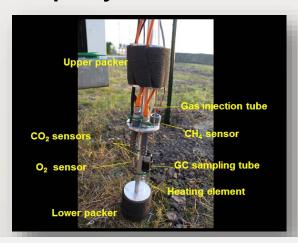
Near-Surface Monitoring

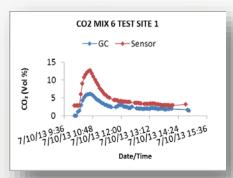
- New field observations (Norway and Brazil) show little predictability in where CO₂ will emerge at the surface
- Integrating data collection over an appropriate area is a remaining challenge
- Understanding transport and chemical evolution of fluids through the overburden
 - Role of faults in vertical transmission
 - Reactivity Under what fluxes and time spans will CO₂ reach the surface?
 - Secondary accumulations?
 - Effectiveness of tracers to track vertical migration

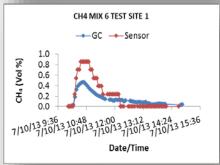
Deep Reservoir to Near-surface:

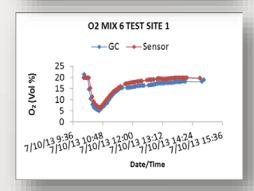
Transition to Cost-Effective Industrial Monitoring

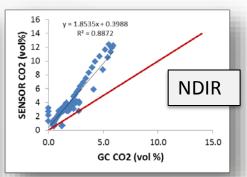
- Minimalistic approach relative to research-oriented
- Not all tools and approaches will be used
- Balance between regulatory and technical goals
- Balance between cost effective and accurate data collection

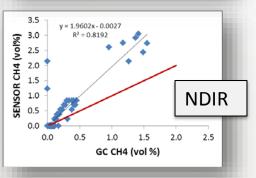


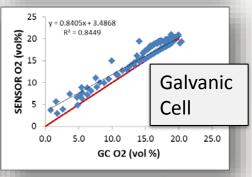

User-Friendly Data Collection


- Accurate
- Continuous
- Real-time
- Smart

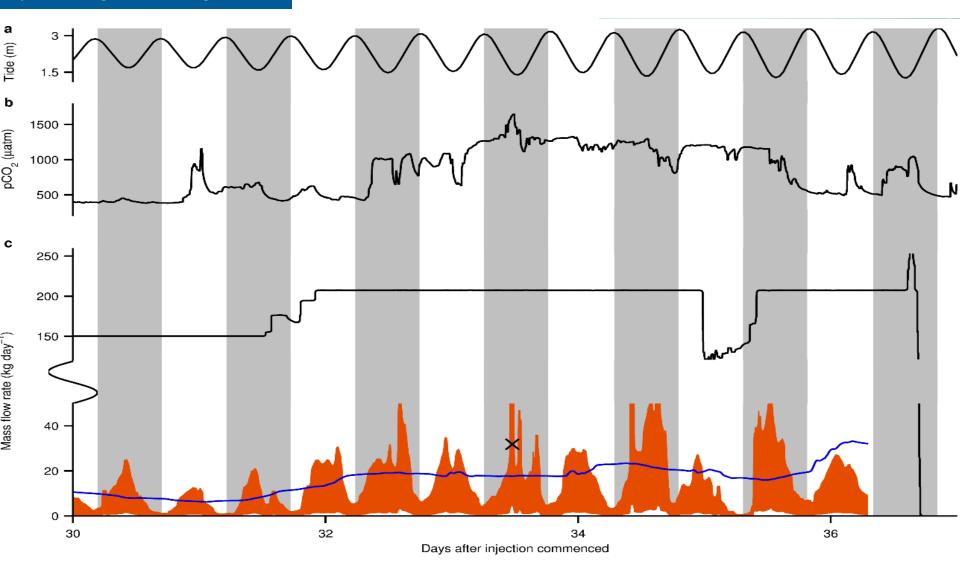

Current technologies require improvement for field deployment

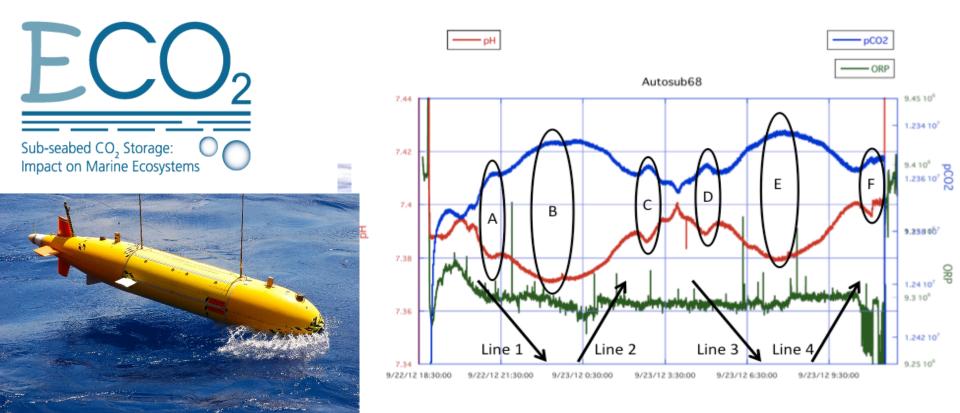


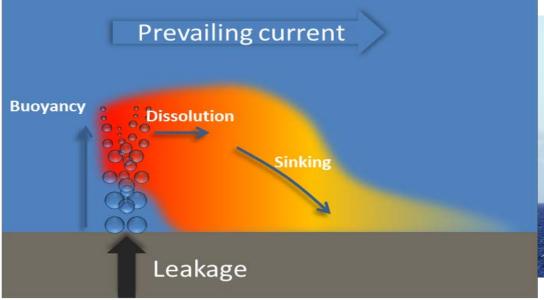

Commercial sensors being tested downhole



QICS: UK – Japan; controlled sub-seafloor CO₂ release experiment




ECO2: EU project; analogue and existing site study, including work at Sleipner and Snøhvit; Statoil project partner


Ian Wright,
Director, Science and Technology
National Oceanography Centre, Southampton, UK

International Monitoring Updates from IEAGHG Monitoring Network

US DOE Carbon Storage R&D Project Review Meeting

12th – 14th August 2014 Pittsburgh

