Robust Metal-Ceramic Coaxial Cable Sensors for Distributed Temperature Monitoring in Fossil Energy Power Systems

Project #: DE-FE-0022993

DOE Project Manager: Jessica Mullen

PI: Junhang Dong

University of Cincinnati

Co-PI: Hai Xiao

Clemson University

PRESENTATION OUTLINE

Introduction

- Challenge in in-situ, distributed HT measurement
- Project Objective
 - New MCCC-FPI sensor
- MCCC-FPI Concept and Issues
 - Proof of FPI concept (previous work)
 - Concept of this Work MCCC
 - Hurdles to developing MCCC-FPI
- Research Focus
 - Material Development
 - Fabrication
 - Sensor test
- Research Approach
- Tasks, Milestone, Timelines
- First Quarter Results

INTRODUCTION

High temperature measurements in advanced fossil fuel power plants:

- Needs for real-time distributed temperature measurement for
 - Process control
 - Performance enhancement
 - Safety assurance (equipment, environment, and human)

Temperature sensors must

- survive and function in corrosive gases (T ≥1000°C and P >1000 Psi)
- possess mechanical strength and small size for ease of installation with reliability,
- have high sensitivity,
- provide distributed sensing on single string covering large distance/area
- be of low cost.

Current status

- 1) Thermocouples (point measurement; intrusive to structure ...)
- 2) Fiber optic sensors (can be distributed, e.g., Fiber Bragg gratings (FBGs); packaging difficulty, temperature limit <800°C ...)
- 3) Recently emerging coaxial cable Fabry-Perot Interferometric sensor (can be distributed; larger size and stronger to avoid bulky protection; problem is the unavailability of cable materials ...)

PROJECT OBJECTIVE

Project Goal:

To develop materials for a new type of low cost, robust, (minimum packaging/ protection) metal-ceramic coaxial cable (MCCC) Fabry-Perot interferometer (FPI) sensor and demonstrate its capability of cascading a series of FPIs in a single MCCC for real-time distributed monitoring of temperature up to 1000°C.

Technical Objectives:

- 1) to identify and optimize sensor materials with desired electrical and dielectric properties as well as thermochemical and structural stability,
- 2) to construct the MCCC-FPI sensor and test the sensor stability in high temperature gases relevant to fossil energy power system,
- 3) to develop the instrumentation for signal processing and algorithmic for operating the sensor and distributed sensing systems, and
- 4) to demonstrate the MCCC-FPI sensor for real-time distributed temperature measurement and evaluate its performance in terms of sensitivity, spatial resolution, stability, and response speed that are important to practical applications.

CONCEPT AND CHALLENGE

- MCCC-FPI MW sensors
- Technical Issues Material Unavailability

Optical Fiber vs. Coaxial Cable Communication – EM Wave Transmission

- Both for EM transmission/communication
- Structural similarity
- Same governing theory (physics)
- Different frequency ranges of carried EM
- Both waveguides are useful for constructing sensors
- Readiness for instrumentation for sensor system

Coaxial Cable Fabry-Perot Interferometric (CC-FPI) Sensor

Fiber Optical Interferometer

Principle of the CC-FPI sensor operation

- Device: RF interferometer analog to fiber optic interferometer
- Mechanism: interference generated by reflectance from reflectors (ε disturbance)
- Detection: Shift of interferogram

CC-FPI Temperature Sensing Mechanism

Two reflected waves (U1 and U2)

$$U_1 = \Gamma(f)e^{-\alpha z}\cos(2\pi ft)$$
 and $U_2 = \Gamma(f)e^{-\alpha z}\cos\left[2\pi f(t+\tau)\right]$
where $\tau = 2d\sqrt{\varepsilon_r}/c$

Interference signal (U) – summation of the two reflected waves

$$U = 2 \cdot \Gamma(f) e^{-\alpha z} \cos \left(2\pi f \frac{2d\sqrt{\varepsilon_r}}{c} \right) \cos \left[2\pi f \left(t + \frac{2d\sqrt{\varepsilon_r}}{c} \right) \right]$$

• CC-FPI Structural parameter (d) and (insulator) material property (ε_r) are temperature dependent

$$d_T = d_0 + b_T(T - T_0)$$

$$\varepsilon_{r,T} = \sum_{i=0}^n (a_i \times T^i)$$

• U(T) is thus a function of temperature - real-time temperature measurement by monitoring the interferometric spectrum shift, U(T)

$$U(T) = K_1 \cos(K_2 \cdot \tau(T)) \cdot \cos[K_2(t + \tau(T))] \qquad \tau(T) = 2d_T \cdot \varepsilon_{r,T}^{0.5} / c$$

CC-FPI Signal – Transmission or Reflection

Multiple CC-FPI Sensors for Distributed Temperature Measurement

- Distributed CC-FPI sensor multiple FPI along a single ceramic coaxial cable
- The reflectors of weak reflections and low insertion loss enable long distance coverage (2nd reflections are negligible)
- Individual sensor location by extracting and analyzing the spectrum of a specific discrete FPI - achieved by a novel joint time-frequency domain measurement technique (Xiao et al., 2013/CU)
- The reflected EM waves detected by a VNA for resolving amplitude and phase of each reflected signal
- Initial calculation showed that the total length of the distributed CC-FPI sensor can be over 80 meters
- Goal: accuracy ±2°C in a range of 350 1000°C and spatial resolution <10 cm

Joint-time-frequency domain interrogation of multi-point FPI in a single cable for distributed sensing with high spatial resolution

Previous Work Proof of CC-FPI Functionality

CC-FPI by hole drilling

Previous Work – Multi-Point FPI

Multi-Point CC-FPI sensor for distributed measurement

Concept of This Work – The Use of Metal-Ceramic Materials for CC-FPI (MCCC-FPI) Sensors

MCCC-FPI distributed sensors:

- 1. Metal conductors (tube & wire) with ceramic (or air) insulation (or reflectors)
- 2. Eliminate bulky and expensive protective packaging
- 3. Withstand highly turbulent flows and particulate impact
- 4. Minimize destruction to the equipment for installation and maintenance

Key Issues for Realizationof the MCCC-FPI Sensors

MCCC materials for the proposed high-temperature FPI sensors are currently nonexistent.

- 1. Commercial communication CC with metal (conductors) and polymer insulators are not for high temperature applications
- 2. Limited metal-ceramic CC are for high temperature RF communication and not suitable for MCCC-FPI construction
- Fabrication method and FPI structure currently employed by the PIs (e.g. drilling holes through insulation) are not suitable for in-situ applications in fossil energy system
- 4. Structural parameters (i.e. element dimensions) and insulator/reflector ε_r contrast need to be optimized based on fundamental studies
- 5. Structural and material property stabilities in harsh conditions and impact on sensor performance (e.g. conductor surface oxidation and protection, microstructure evolution by thermal cycle and annealing, etc.)
- 6. Flexibility for installation and operation

Primary Research Focus

- 1. Developing MCCC Materials
- 2. Fabricating MCCC-FPI Sensors
- 3. Demonstrating Temperature Measurements up to 1000°C

Ample Opportunity for MCCC Material Development

1. Metal and metal alloy conductors

- Surface modification (tuning surface conductivity for HT applications)
- Surface protection (e.g., N₂-filled for oxidation prevention)
- Outer surface (contacting fossil gas) protection by ceramic thin films

2. Ceramics for insulators and reflectors

- The ε_r -contrast and signal strength
- Thermal stability (structure & chemical)
 - Phase and microstructure
- Compatibility
 - Conductor/insulator
 - Insulator/reflector

3. Flexibility - insulator

- Rigid tubes
- Powdery pack

Hetero-phase (or porous) materials with micron-level homogeneity (particles large enough to avoid sintering at < 1000° C – dp >2 μ m), e.g., effective ε_r (porous):

$$\varepsilon_{r,e\!f\!f} = \varepsilon_{air} \frac{\varepsilon^2 + 4\varepsilon + 4 + 2x_f \varepsilon^2 + 2x_f \varepsilon - 4x_f + 9x_f^2 \varepsilon(\varepsilon - 1)}{\varepsilon^2 + 4\varepsilon + 4 - x_f \varepsilon^2 - x_f \varepsilon + 2x_f + 9x_f^2(\varepsilon - 1)}, \quad \varepsilon = \frac{\varepsilon_c}{\varepsilon_{air}}$$

Dielectric Constant Measurement

Using ceramic discs of selected materials

- Impedance analysis
- Equivalent circuit modeling for dielectric constant determination
- Temperature dependence of ε_r

Dong & coworkers, Chem Commn. 50 (2014) 2416.

Thermal Structural & Chemical Stability Study

1. Multilayer coatings

- Microstructure stability
- Grain growth/sintering temperature

2. High Temperature phase & chemical Stability

- New phase formation (XRD)
- Solid state ion diffusion (EDS)

Tubular Insulator (Rigid)

Packed Powder Insulators (Flexible)

Research Approach

CC-FPI Sensor Design/ simulation (CU)

- FPI structure parameters
 (D, d, l, δ ...)
- CC-FPI material electrical properties (ε_r, σ ...)

Instrumentation (CU)

- Signal processing
- CC-FPI material electrical properties (ε_r , σ ...)

Sensor Material Development (UC)

- Conductors: metal and metal-alloys; Insulators and reflectors: ceramics and voids
- Thermal, structural, & chemical stabilities

Sensor fabrication (UC)

- Single point MCCC-FPI
- Multiple-point FPI in single MCCC

Sensor test (UC/CU)

- Calibration
- Distributed temperature measurements: (2°C; 2m MCCC; < 10 cm; 500~1000°C)
- Stability (> 1 month test)

No

Feedback for improvement

Task, Milestone, and Timeline

	Tasks	Milestones	Date of completion
Year I (07/01/2014 - 06/30/2015)	<i>Task 1.0</i> Project Management and Planning		
	<i>Task 2.0</i> Design single-point MCCC-FPI sensor and sensor material development.	1. Designed single point MCCC-FPI.	12/31/2014
		2. Identified materials for MCCC-FPI to withstand up to 1000°C in relevant gases.	6/30/2015
Year II (07/1/2015 — 6/30/2016)	<i>Task 3.0</i> Fabrication and test of single-point MCCC-FPI sensor	1. Fabricated the single-point MCCC-FPI sensor and demonstrated single point measurement up to 500°C with accuracy of ±2°C.	12/31/2015 (GO/NO-GO)
	<i>Task 4.0</i> Design and fabrication of multi-point MCCC-FPI for distributed sensing	2. Designed multi-point MCCC-FPI sensor and established instrument and software for distributed sensing.	6/30/2016
Year III (07/1/2016 - 6/30/2017)	<i>Task 4.0</i> (continued) <i>Task 5.0</i> Evaluation of the multi-point MCCC-FPI for distributed temperature measurement	1. Fabricated Multipoint FPIs (16 Pts) in ~2m-long MCCC.	12/31/2016
		2. Demonstrated the multipoint MCCC for distributed measurement up to 1000°C with spatial resolution <10cm	6/30/2017

First Quarter Results: MCCC-FPI Test Apparatus

First Quarter Results: Single Point MCCC-FPI

Single point CC-FPI: stainless steel conductors (tube and wire), alumina insulator, and air gap (~1 mm) reflectors.

Q & A

THANK YOU

Coaxial Cable Bragg Grating

Page 25 T. Wei et al., Applied Physics Letters, 2011

Coaxial Cable F-P Interferometer

Fiber optic Fabry-Perot Interferometer

Coaxial cable Fabry-Perot Interferometer

Transmission spectrum of CC-IFPI

Temperature Measurement

Temp. and Strain Measurement

Temperature Responses

Large Strain Measurement

- Different cable has different temperature responses
- Large strain measurement (>10%) with high sensitivity (~με)

Fabrication by drilling holes

- Using a computer numerical control (CNC) machine to drill holes into the cable.
- Replacing the dielectric material with air to create the impedance discontinuity
- Problem: poor repeatability, contaminations, poor robustness

Ceramic Coaxial Cable

- Made by using sintered SiO2 as the insulation layer
- Can operate at high temperatures up to 1000°C and high pressures up to 10,000 psi
- Operate in the frequency range up to 20 GHz
- Have a very small attenuation of 0.08 dB/m that allows the signal to be transmitted over a long distance
- Have the necessary flexibility for deployment

Problems

- Insensitive at temperature less than 170C
- Signal transmission okay
- Sensor failed after 650C

Large unstable residual reflections

- Random noise as big as 2% reflection
- These reflections are unstable at high temperatures
- The drilled holes degraded (reduced reflections) at high temperatures

