NOVEL SILICA NANOSTRUCTURED PLATFORMS WITH ENGINEERED SURFACE FUNCTIONALITY AND SPHERICAL MORPHOLOGY FOR LOW-COST HIGH-EFFICIENCY CARBON CAPTURE (FE-0023541) - KICK-OFF PRESENTATION -

Cheng-Yu Lai, Daniela Radu Delaware State University

HBCU/UCR Kick-Off Meeting Morgantown, West Virginia, October 27-28, 2014 National Energy Technology Laboratory

Outline

- The Project Team
- Technical background / motivation for the project
- Potential significance of the results of the work
- Relevancy to Fossil Energy
- Statement of Project Objectives (SOPO)
- Project milestones, budget, and schedules as related to SOPO tasks
- Project risks and risk management plan
- Other relevant aspects of the project management plan (PMP)
- Project status

The Project Team

PI – Cheng-Yu Lai

Co-PI – Daniela Radu

One graduate student – to be hired

The Project Team

<u>PI Dr. Cheng-Yu Lai</u> - Associate Professor (tenure-track), Department of Chemistry at Delaware State University (since 2012).

Prior experience:

- Senior researcher at DuPont CR&D, Wilmington, DE - coordinated activities related to *synthesis* and application of novel battery materials based on mesoporous carbon-sulfur as cathode for Li-ion batteries.

- Postdoctoral appointment at The Scripps Research Institute, La Jolla, CA -developed bio-derived nanoparticles.
- Ph.D. work at Iowa State University, Ames, IA pioneered the field of functionalized and multifunctionalized mesoporous silica nanospheres (MSN) including their applications in catalysis and biotech.
- Authored over 30 technical articles, has three granted patents and several applications.

Project responsibilities:

- project management
- coordinate the activities of the graduate student (to be hired)
- materials synthesis and characterization.

The Project Team

<u>Co-PI Dr. Daniela Radu</u> - Assistant Professor (tenure-track), Department of Chemistry at Delaware State University (since 2013). <u>Prior experience:</u>

- Senior researcher at DuPont CR&D, Wilmington, DE focus in solar research, specifically, *nanoparticles-based solution processed thin-film photovoltaics*.
- Postdoctoral appointment at The Scripps Research Institute, La Jolla, CA developed cyclic peptide nanotubes.
- During Ph.D. work explored mesoporous silica applications in catalysis for biodiesel, sensing and template for polymerization of conducting nanowires.
- authored 32 technical articles, pending patent applications and 2 granted patents.

Project Responsibilities:

- Designing and accomplishing the CO₂ capture experiments as well as the sorbent regeneration study.
- Dr. Radu will use her experience in DOE projects reporting (*PI on DOE DISTANCE Solar award*) to assist Dr. Lai with project reporting.

Fossil Fuel and Cement Emissions

Global fossil fuel and cement emissions: 36.1 ± 1.8 GtCO₂ in 2013, 61% over 1990

• Projection for 2014 : 37.0 \pm 1.9 GtCO₂, 65% over 1990

Source: CDIAC, Le Quéré et al 2014, Global Carbon Budget 2014

Top Fossil Fuel Emitters (Absolute)

The top four emitters in 2013 covered **58%** of global emissions China (28%), United States (14%), EU28 (10%), India (7%)

Bunkers fuel used for international transport is 3% of global emissions

Statistical differences between the global estimates and sum of national totals is 3% of global emissions

Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014

At the Climate Summit, President Obama called for further reductions in greenhouse gas emissions.

- The implications of the 2014 carbon budget for remaining below two degrees (At the current rate of CO₂ emissions, this 1200-billion-tonne CO₂ 'quota' will be used up in around 30 years or one generation. *Nature Geoscience*, published 22 September)
- 2. Option to share the remaining <u>fossil fuel quota</u> to meet the two degree target (Sharing a quota on cumulative carbon emissions. *Nature Climate Change*, published 22 September)
- 3. How much societies will need to rely on untried <u>technologies</u> to remain below two degrees? (Betting on negative emissions. *Nature Climate Change*, published September 21th, 2014)

- Pathway to CO₂ Capture
 - 1. Post-Combustion CO₂ is separated from other flue gas constituents either originally present in the air or produced by combustion.
 - 2. Pre-Combustion carbon is removed from the fuel before combustion.
 - 3. Oxy-Combustion the fuel is burned in an oxygen stream that contains little or no nitrogen.

Separation Technologies for CO₂ Capture

Materials for CO₂ capture in the context of postcombustion, precombustion, and oxyfuel processes.

Conventional Chemical Absorption for CO₂ Capture

Scheme 1. General reactions for the chemical absorption of CO2 by a) primary or secondary and b) tertiary amine-containing solvents.

Complications associated with the use of <u>liquid amines</u>: corrosion on equipment, oxidative degradation of absorbents, flow problems caused by increasing viscosity relatively high energy consumption suggest that this method is far from ideal.

Need for Solid Sorbents

Emerging Solid Sorbent Materials for CO₂ Capture

PHASE I. Nano/mesoporous Materials for CO₂ Capture

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710.

- Current Synthetic Methods for Mesoporous Silica Surface Functionalization
 - Post-synthesis Grafting (PSG):

Advantages:

 Virtually any functional group could be covalently attached to the surface

Disadvantages:

- Inhomogeneous surface coverage
- Lack of spatial control

Low Surface Coverage (< 25%):

Introduction of functional groups in situ: Co-condensation

Introduce functional groups that are *electrostatically attractive* to the ammonium surfactant head groups and able to *compete with silicate anions*.

Functionalized Mesoporous Silica Nanospheres

SEM of MCM-41 Nanospheres

BET N₂ Ad/desorption Isotherms:

BJH Pore Size Distribution:

Lai, C.-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S.-Y. J. Am. Chem. Soc., 2003, 125, 4451-4459.

- Functionalized Mesoporous Silica Nanospheres
- Multiplayer Amino Silane for Enhancing CO₂ adsorption Capacity

Name	Molecular Structure
3-Aminopropyl)trimethoxysilane	H ₃ CO OCH ₃ NH ₂ NH ₂
N-(2-aminoethyl)-3- aminopropyltriethoxysilane	H ₃ CO OCH ₃ H N NH ₂
N-[3-(trimethoxysilyl) propyl)] diethylenetriamine	H ₃ CO OCH ₃ H ₃ CO NH ₂ NH ₂

TEM micrographs of typical functionalized MSN

- Pitfalls in Designing MSN for CO₂ capture:
 - -Pore Blocking Hindering Amine Permeability

Typical MSN: cylindrical pores of drive closepacking of amine groups and render inner amino groups inaccessible for CO₂ capture

Retard Adsorption Kinetics for CO₂ DIFFUSION

Scheme 2. 3-(Methylamino)-propyltrimethoxysilane (MAP) functionalizated MSN pore

SOLUTION:
Large Pores-MSN
(Hierarchical-pores MSN)

- Strategy for Synthesizing Hierarchical-Pores NanoSilica
 - Surfactant template changes
 - Directing agents

TEM of NSN Nanospheres

SEM of NSN Nanospheres

Pore Volume = $1.22 \text{ cm}^3/\text{g}$

BJH Pore Diameter = 8.43 nm

BET Surface Area = $607.82 \text{ m}^2/\text{g}$

- Strategy for Synthesizing Hierarchical-Pores NanoSilica
 - Co-solvents

SEM images of materials NSN-1 and NSN-3

PHASE II. Increasing CO₂ capture by introducing "Nitrogen-repellent" components

Prior approach¹: **azo-bridged**, **nitrogen-rich**, **aromatic**, **water stable**, **nanoporous covalent organic polymer (Azo-COP)** <u>N₂-phobic</u> nanoporous covalent organic polymers.

Disadvantage: Cumbersome organic synthesis.

Our approach: Bi-Functional Nanosheet-made Silica Nanosphere Adsorbent for N₂-Phobic Highly Selective CO₂ Capture

^{1.} Patel, H. A.; Hyun Je, S.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A., Unprecedented high-temperature CO₂ selectivity in N₂-phobic nanoporous covalent organic polymers. *Nat Commun* **2013**, *4*, 1357.

 Diffusion Controlled Mesoporous Silica Nanosphere Adsorbent for Highly Selective CO₂ Capture – Concept

 Diffusion Controlled Mesoporous Silica Nanosphere Adsorbent for Highly Selective CO₂ Capture

Differential functionalization methodology applied to NSN for further functionalization with polymeric "gate-keeper" groups.

NSN-based adsorbent for highly-efficient CO₂ capture

- <u>Carbon dioxide cycling experiments</u> will be performed on TGA Instruments analyzer using:

- **a).** 15% CO₂ in N₂;
- **b).** CO₂;
- **c).** N₂ at a predetermined flow rate for all gases.

Scheme 3. TGA setting for CO₂ capture experiments

Separation From Gas Mixture

CO₂ Adsorption and N₂ Separation on Flue Gas Mixture

Potential significance of the results of the work

- The most significant challenge for CO₂ capture at present, the large energy penalty associated with the capture process.
- Current technologies, approximately 70% of the cost of CCS is associated with the selective capture of CO₂ from the power plant flue gas.
- Our approach involve dramatic costs cut by applying the capture platform in form of PAINT

Potential significance of the results of the work

Outcomes

- a) A graduate student fully trained in materials synthesis and characterization.
- **b).** A new <u>technology for fabrication of nanosheet-made</u> <u>mesoporous silica</u> (NSN) platform with high CO₂ capture capacity at low-cost and with high regeneration capacity.
- **c).** A new <u>technology forfabrication of a polymer coated</u> <u>nanosheet-made mesoporous silica</u> platform with nitrogen-phobic properties and high CO₂ capture capacity at low cost and with high regeneration capacity.

Potential significance of the results of the work

Impacts

- **a).** <u>Social—People.</u> Training of a graduate student from an underrepresented group will contribute to increasing diversity of the workforce.
- **b).** Technical—Efficient CO₂-capture-technologies: the materials developed will remove CO₂ from air in existing fossil-burning plants.
- c). Other technical benefits. Applicability to other sectors. Ex. alkaline fuel cells (AFCs) and iron-air batteries require CO_2 —free O_2 sources to avoid electrolyte side reactions \rightarrow inexpensive CO_2 adsorbents could solve issues associated with the operation of AFCs (provided current air purification methods lack of feasibility and high costs).

Relevancy to Fossil Energy

- Existing post-combustion CO₂ control systems separate CO₂ from the flue gas produced by conventional coal combustion in air. The flue gas is at atmospheric pressure and has a CO₂ concentration of 10-15 % (by volume).
- Capturing CO₂ under these conditions is challenging because:
 - The low pressure and dilute concentration dictate a high total volume of gas to be treated.
 - Trace impurities in the flue gas tend to reduce the effectiveness of the CO₂ separation processes.
 - Compressing captured CO₂ from atmospheric pressure to pipeline pressure (1,200-2,200 pounds per square inch) represents a large parasitic energy load.
- The project aims to develop a novel, low cost, scalable platform that is anticipated to work at low CO₂ partial pressure and that the system will not be impaired by impurities due to hierarchical structure of the platform.
- In addition, we developed a strategy to increase CO₂ Capture efficiency. The
 design will render the platform nitrogen-phobic by engineering the polymeric
 layer to act as a gate-keeper to exclude nitrogen → increase capacity for CO₂.

Statement of Project Objectives (SOPO)

Objective 1. Demonstrate a nanosheets-made silica nanosphere (NSN) platform as solid sorbent with spatial control of CO₂ capture amine functionality and high amine loading at least 7 mmol N/g sorbent, with hybrid absorption—adsorption capacity of at least 5 mmol CO₂ per gram of NSN sorbent.

<u>Objective 2</u>. Perform parametric and long-duration tests to demonstrate that the technology meets performance target of achieving of CO_2 capture at >90% of simulated flue gas with 15% CO_2 .

Objective 3. Engineer a gate-keeping polymeric layer of NSN surface (PolyNSN), designed to increase selectivity of CO₂ capture by excluding N₂ from in the capture process.

<u>Objective 4</u>. Perform parametric and long-duration tests to demonstrate proof-of-concept of nitrogen exclusion in selective CO₂ capture in PolyNSN.

Project milestones, Budget, and Schedules as related to SOPO tasks

SOPO ID

	SOPO ID Number	Item Description	Perform	ner Start Date	End Date		
SOPO ID Number	Item Description		Performer		Start Date	End Date	
TASK 5.0	PolyNSN selective CO ₂ capture experiments		RADU		03/01/16	08/31/17	
TASK 6.0	Conduct long-term tests to determine the chemical and physical stability of the sorbents.		RAD	U	06/01/15	08/31/17	
Final Deliverables	Final Deliverable 1: Demonstrate a high performance NSN platform with at least 5 mmol CO2/g sorbent and high robustness and regeneration capacity (100%). Final Deliverable 2: Demonstrate a high performance PolyNSN platform with at least 5 mmol CO2/g sorbent, high robustness and regeneration capacity (100%) capability to exclude N2.		LAI &			08/31/17	

and regenera	ation capacity (100%)
capability to	exclude N2.

Project Risks and Risk Management Plan

 The risks associated with this project are related to budget (costs) and to health and safety.

Project Costs: Excess spending on the budget.

The risk response is based on two strategies:

- Avoid/Mitigate by Preventing: Strict documentation will be kept to avoid overspending.
- Mitigate by Recovering: assess problem extent and report to DOE. If costs are in year 1 or 2, allowance will be request for recovering from Budget Year 3.

<u>Health and Safety</u>: Goal is ZERO on safety incidents and health hazards. The risk response is based on two strategies:

- Avoid/Mitigate by Preventing: SOPs will be associated with all instruments used in the project and all substances used will have MSDS sheets in electronic (lab computer)and hardcopy format in the laboratory.
- Accept: Safety incidents will be treated per University policy and will be further reported to DOE.

Other Relevant Aspects of The Project Management Plan (PMP)-Budget

Cotogowy	Budget	Budget	Budget	Total
Category	Year1	Year2	Year3	Costs
a. Personnel	\$32,944	\$32,944	\$32,944	\$98,832
b. Fringe Benefits	\$3,972	\$3,972	\$3,972	\$11,916
c. Travel	\$4,000	\$4,000	\$4,000	\$12,000
d. Equipment	\$24,673	\$0	\$0	\$24,673
e. Supplies	\$7,500	\$7,500	\$7,500	\$22,500
f. Contractual	\$0	\$0	\$0	\$0
g. Construction	\$0	\$0	\$0	\$0
h. Other	\$3,000	\$3,000	\$2,600	\$8,600
i. Total Direct Charges (sum of 6a-6h)	\$76,089	\$51,416	\$51,016	\$178,521
j. Indirect Charges	\$23,651	\$23,651	\$23,467	\$70,769
k. Totals (sum of 6i-6j)	\$99,740	\$75,067	\$74,483	\$249,290

Other Relevant Aspects of The Project Management Plan (PMP)-*Decision Points*

Success Criteria at Decision Points

TASK 1.0 – Project Management and Planning (please see the Project Management Plan).

<u>TASK 2.0</u> (Budget period 1) <u>Preparation and characterization of NSN-solid</u> <u>sorbents</u>

Success: obtaining the material with spherical morphology and particle size <1 micron, and surface area >1400 m2/g and amine loading at 7 mmol/g.

Go/No-GO Decision Point: Low surface area and low amine loading below performance targets.

TASK 3.0 Determine the CO₂ absorption and regenerative capacity of NSN materials.

Success: Demonstrate an NSN platform with a capacity of at least 4 mmol CO_2/g sorbent capable to remove >90% of the CO_2 from a simulated flue-gas mixture containing 15 vol% CO_2 at 40-70 °C. Demonstrate an amine NSN sorbent with 100% absorption capacity regeneration.

Other Relevant Aspects of The Project Management Plan (PMP)-*Decision Points*

TASK 4.0 Gate-keeping layer fabrication on NSN surface

Success: Demonstrate presence of a polymeric layer on the surface of the NSN via TEM.

Go/No-GO Decision Point: Presence of a polymeric layer is not identified.

TASK 5.0 PolyNSN selective CO₂ capture experiments

Success: Demonstrate a PolyNSN platform with an improved capacity of at least 5 mmol CO_2 /g sorbent capable to remove >90% of the CO_2 from a simulated flue-gas mixture containing 15 vol% CO_2 at 40-70 °C. Demonstrate a PolyNSN sorbent with 100% absorption capacity regeneration.

Go/No-GO Decision Point: No improvements in absorption capacity are observed for PolyNSN in comparison with NSN.

<u>TASK 6.0</u> Conduct long-term tests to determine the chemical and physical stability of the sorbents.

Success: Demonstrate a sorbent with high chemical and mechanical stability that retains 95% of absorption capacity within 6 months, and at least 50% over two years.

Project Status

SOPO ID Number	Item Description	Performer	Start Date	End Date
Task 2.0	Preparation and characterization of NSN-solid sorbents	LAI	09/01/14	05/31/15
Subtask 2.1	Silica Sorbents Preparation – Synthesis of NSN	LAI	09/01/14	05/31/15
Subtask 2.2	Silica Sorbents Characterization	LAI	09/01/14	05/31/15

Task 2.0 Preparation and Characterization of NSN-solid sorbents STATUS: Ongoing;

- Few materials fabricated and ready for characterization
- Images below took at University of Delaware
- New TEM/SEM microscope on site (installed DOD Award, PI Daniela Radu)

TEM images of NSN-1 (a) and NSN-3(b) showing the nanosheet-structure of the two novel materials

SEM images of materials NSN-1 and NSN-3

Acknowledgements

- U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL), through Cooperative Agreement No. DE-FE-0023541
- Department of Chemistry, Delaware State University

Thank you for your attention!

Questions?