Engineering Accessible Adsorption Sites in Metal Organic Frameworks for CO₂ Capture

Principal Investigator:

Co-principal Investigator:

Conrad W. Ingram, Ph. D. Associate Professor of Chemistry

Dinadayalane Tandabany, Ph. D. Associate Professor of Chemistry

Performance period:

October 2014 to September 2017

Presented at:

DOE HBCU/UCR Joint Kickoff Meeting National Energy Technology Laboratory Morgantown, WV

October 28-29, 2014

DE-FE0022952

Presentation Outline

- The project team
- Technical background/motivation for the project
- Potential significance of the results of the work
- Relevancy to fossil energy
- Statement of Project Objectives (SOPO)
- Project milestones, budget, and schedule as related to SOPO tasks
- Project management plan
- Project status and preliminary results

Project Team

Principal Investigator:

Co-principal Investigator:

Post Doc:

Students:

Conrad W. Ingram, Ph. D. Associate Professor of Chemistry (Inorganic Chemistry, CAU)

Dinadanylane Tandabany, Ph. D. Associate Professor of Chemistry (Physical/computational chemistry, CAU)

Huayang Lee, Ph. D.

One graduate (Ph.D.) student Two project funded undergraduate students Many leverage-funded undergraduate students

Technical Background/Research Motivation

Department of Energy (DOE) is focused Improving the cost effectiveness of novel technologies for CO₂ capture so that fossil based systems with carbon capture are cost competitive.

Typically flue gas composition:							
CO ₂	3–15% (by vol.)						
O_2	5%						
N ₂	81%						

Adsorbents performance requirements for effective post combustion adsorption technology:

- chemically stable
- high CO₂ capacity and selectivity
- easily regenerated with minimal energy input
- easily synthesized with low capital cost

<u>http://energy.gov/fe/science-innovation/carbon-capture-and-storage-research/carbon-capture-rd</u> http://www.alrc.doe.gov/publications/proceedings/01/carbon_seq/p9.pdf

Metal organic framework as CO₂ adsorbent

MOF = covalent linkage of metal ions as nodes + organic ligand as linker (also defined as 3D coordination polymer with permanent porosity)

Attributes

- •Unprecedented high surface area –up to 5000 m²/g
- Tunable surface chemistry and pore size
- Thermally stability (variability)
- Potential large concentration of adsorption sites

Drawbacks

- Limited accessible to sites
- Pore window less than 2 nm
- Thermally stability (variability)

Commonly used ligand: benzene dicarboxylate

http://yaghi.chem.ucla.edu/staticpages/research/01MOFs

A combination of amine functionality and unsaturated metal sites to increase adsorption capacity

Examples of MOFs with metal center as CO₂ adsorption sites

Chemical Formula	Common	BET	Langmuir	CO ₂	Press.	Temp
	Name	(m_2/g)	(m ₂ /g)	(Wt_%)	(bar)	(K)
Mg ₂ (DOBDC)	Mg-MOF-74	1800	2060	35.2	1	298
$Zn_4O(BBC)_2(H_2O)_3$	MOF-200	4530	10400	70.9	50	298

DOBDC: 2,5-dioxido-1,4-benzenedicarboxylate

BBC: 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-iyl))tribenzoate

Furukawa H, et al., Science, 329, 424–428 (2010). Britt D, et al. Proc Natl Acad Sci.USA ,106,:20637–20640 (2009).

Objectives

To synthesize metal organic framework (MOFs) with improved sites accessibility, thus enhanced CO_2 adsorption and selectivity properties.

Specific objectives:

- Synthesize MOFs with metal ions adsorption sites in more accessible locations
- Synthesize MOFs with nitrogen/amine containing-ligand linker as a possible improved alternative to amine-functionalized MOFs; and
- Understand the nature of the adsorption sites and mechanism(s) by computational studies relevant to the adsorption of CO₂ within the metal organic frameworks.

Relevance-Outcomes and Potential Impacts

- The proposed research supports the Department of Energy's (DOE) Office of Fossil Energy and the National Energy Technology Laboratory (NETL) mission
 - Advances in the science of coal/fossil fuel technologies, specifically carbon capture.
- The research will guide rational design/synthesis strategies towards producing advanced sorbents for CO₂ capture.
- Successful CO₂ adsorbent materials will have tremendous industrial and environmental (CO₂ mitigation) impact.
- Provide research opportunities for graduate and undergraduate students in the fields of chemistry, materials and science related to the use of fossil energy resources.

> Develop the next generation of US scientists

Approach

- Position metal in more accessible location.
- Increase thermal stability of resulting MOFs.
- Explore the effects of :

- chemical compositions of synthesis mixtures (such as, organic linkers/functionalities and metals)
- the synthesis conditions (such as temperature, and solvents)

Diaza crown ethers complexes as organic linkers

Five main activities:

- **1.** Evaluate the CO₂ adsorption properties of diazo crown ether polycarboxylates based MOFs that were recently synthesized in our laboratory.
- 2. Synthesize new MOFs based on an expanded series of diazo crown ethers and judicious choice of metal ions, and, evaluate their CO₂ adsorption properties.
- **3.** Evaluate the CO₂ adsorption properties of MOFs synthesized with the nitrogen-containing pyrazine linker, recently synthesized in our laboratory.

- 4. Investigate the nature of the sites and mechanism(s) of adsorption by conducting density functional theory (DFT) based computational studies relevant to the adsorption of CO₂ within the metal organic frameworks:
 - Density functional theory (DFT) level using double -z basis set with appropriate effective core potential (ECP) for metal ion will be employed for designing the materials and the capture of CO₂.
 - A double-layered ONIOM (Our own N-layered Integrated Molecular Orbital and molecular Mechanics) approach will be employed in the benchmarking calculations.
 - The DFT level will be used for the important region (adsorption site) of CO₂ adsorption and semi-empirical method will be used for rest of the region and larger molecular systems of the proposed MOFs.

Tasks

Task 1.0Project management and planning

- Update the Project Management Plan
- Initiate project planning during kick-off meeting

Task 2.1CO2 adsorption studies on our recently synthesized diaza
crown ether carboxylates MOFs

- Conduct CO₂ adsorption studies on the MOFs at temperatures between 273K and 298K and multiple dosing pressures between 0 and 1 atm.
- Generate single component adsorption-desorption isotherms and determine adsorption capacities from them.
- Determine selectivity factor from CO_2/N_2 ratios at the same temperature and pressure.

Task 2.2 Synthesis of MOFs with expanded diazo crown ether carboxylates

- Synthesis of diazo crown ethers polycarboxylates
- Synthesis of MOFs using expanded ligands of the ligands plus metals
- CO_2 adsorption properties and the CO_2/N_2 selectivity studies

• The metal ions will include at minimum s-block (Mg²⁺ and Li⁺), transition (including, Mg²⁺, Mn²⁺, Cu²⁺, Zn²⁺, Co²⁺, Cu²⁺ and Ni²⁺)

Task 2.3 Synthesis of MOFs with diazo crown ether carboxylates containing side-arm substituents towards increasing stability

Use diazo crown ethers polycarboxylates, with side arm substituents to:

- Avoid interpenetrating structures, and to improve the thermal stability of the resulting MOFs, and used in MOFs preparation.
- Impart hydrophobic characteristics, thus aiding in the prevention of structural collapse following the thermal desorption of intercalated synthesis-solvent molecules.
- Task 2.4Evaluation of the CO2 adsorption properties of MOFssynthesized with a nitrogen-donor pyrazine ligand

Task 3.0Investigate the nature of the sites and mechanism(s) of
adsorption by conducting density functional theory (DFT) -
based computational studies relevant to the adsorption of
CO2 within the metal organic frameworks.

Characterization of the resulting framework structures

- X-Ray crystallography: MOFs framework structure and composition
- Powdered X-ray diffraction: Phase crystallinity and phase purity
- Porosimetry: Surface area and pore size, pore volume
- Thermogravimetric analysis: Thermal behavior
- Infrared spectroscopy: Chemical functionalities
- Porosimetry/ Surface area analyzer
 Adsorption studies of CO₂ and nitrogen
- Inductively coupled plasma/ Metal content mass spectrometry:

Tasks Schedule	Year 1			Year 2			Year 3					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1.0 Project planning (select personnel, literature review, experiments design, procure chemicals).	+											
2.1 Adsorption of CO ₂ on three crown ether polycarboxylate MOFs already synthesized in our lab		+	+	+	+	+						
2.2 Synthesis of new s &d block metal, expanded and side arm crown ether polycarboxylate			+	+	+	+						
2.3 Adsorption of CO ₂ on new s & d block, metal expanded and side arm crown ether polycarboxylate MOFs					+	+	+	+	+	+	+	

Tasks and Schedule	Year 1			Year 2			Year 3					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2.4 Adsorption studies of CO ₂ on new pyrazine based MOFs			+	+	+	+						
3.0 Theoretical and computational studies of MOFs adsorption of CO ₂ on MOFs			+	+	+	+	+	+	+	+	+	+
4.0 Periodic reports to DOE	+	+	+	+	+	+	+	+	+	+	+	+

Budget

CATEGORY	Year 1 Costs	Year 2 Costs	Year 3 Costs	Total Costs	Project Costs %
a. Personnel (include students)	\$41,507	\$41,867	\$41,188	\$124,562	49.8%
b. Fringe Benefits	\$5,673	\$5,776	\$5,583	\$17,032	6.8%
c. Travel	\$2,270	\$2,270	\$2,270	\$6,810	2.7%
e. Supplies	\$2,468	\$2,876	\$1,446	\$6,790	2.7%
h. Other Direct Costs	\$2,120	\$2,120	\$1,855	\$6,095	2.4%
Total Direct Costs	\$54,038	\$54,909	\$52,342	\$161,289	65%
i. Indirect Charges	\$29,721	\$30,200	\$28,788	\$88,709	35.5%
Total Project Costs	\$83,759.6	\$85,108	\$81,130	\$249,998	100%

Facilities and Equipment

Research Center for Science and Technology

Clark Atlanta University

- A private, historically black institution (HBCU)
- Formed in 1988 with the consolidation of *Clark College* (founded in 1869) and *Atlanta University* (founded in 1865).

CAU Thomas W. Cole, Jr. Research Center for Science and Technology

• Approximately 240,000 sq. ft. of state-of-the-art laboratories

Facilities and Equipment

Project status

- Project commencement October 1, 2014
- One Post Doc selection in process through leveraging from CAU CREST
- One current undergraduate selected: Ms. Kimberli Hill
- 2nd undergraduate student will be selected in November, 2014
- Graduate student to be selected in November 2014
- Background/literature review has commenced
- Laboratory training and familiarity with MOF synthesis and characterization procedures by student(s) have commenced

Diazo crown carboxylate ligands synthesis

1. New 1D chain-like Zn- diazo crown ether carboxylate coordination polymer

Liao, Ingram, et al, Acta Cryst, 2012 Liao, Ingram, et al, Acta Cryst 2014

2. New 2D cobalt- diazo crown ether carboxylate MOF

Ingram et al. 2013, Crystal Growth and Design.

5. New 3D cobalt- diazo crown ether carboxylate MOF

 Co^{2+} = 3D MOF

Ingram et al. 2013, Crystal Growth and Design.

Ingram et al. 2012, Inorganica Chimica Acta., 2012

Thank You!