RF Catalyzed MHD Power Generation

2014 Magnetohydrodynamics Power Generation Workshop October 1–2, 2014

Dr. Mark D Carter Ad Astra Energy and Environmental Services 141 West Bay Area Blvd Webster, Texas

Mark.Carter@AdAstraRocket.com

Ad Astra Energy and Environmental Services

Concept

- Radio Frequency (RF) power injection just upstream of the MHD power generator can ionize gas to enhance conductivity right where needed
 - RF creates a non-equilibrium electron energy distribution for electron impact ionization
 - Relatively uniform volumetric ionization
 - Magnetic fields allow industrial radio (near FM band) to couple to high-harmonic fast waves (helicon-like modes)
- Plasma flows across a strong magnetic field for MHD generation before recombination can occur
 - Joule heating by MHD currents may also prolong the plasma state
- DC electrode pickup with continuous RF power
- Or, RF power pulses can modulate MHD currents to allow inductive pickup without electrodes in plasma

RF pulse train for MHD inductive pickup

- RF power upstream of the magnet can generate a pulse of plasma (<1% ionized) with high electrical conductivity (~100s of S/m)
- Pedersen current (~MA/m²) can be picked up as AC pulses when plasma passes between pickup coils in high magnetic field region

MHD transient pickup

Relevant Ad Astra work

- United States Patent No 8593064 B2, "Plasma Source Improved with an RF Coupling System," November 26, 2013
- VX-200 experimental operation at 2 Tesla and up to 200 kW RF with over 10,000 shots fired (2010 to 2012)
 - Conduction-cooled superconducting magnet has no liquid cryogens
 - Rarefied argon injection pressure ~ 0.01 bar (room temp)
 - Source startup to ~100% ionization of flowing argon stream in ~ 10 ms (neutral gas oscillations in transition to full ionization)
 - Plasma density ~ mid 10²⁰ m⁻³ with argon at 40 kW
 - An additional ~160 kW of ion cyclotron power is added to achieve argon ion energies up to ~500 eV
 - RF power density is on the order of 30 MW/m³
- Complex ceramic manufacturing and seals with custom silicon nitride parts from 3M (formerly Ceradyne)
- Metal-to-ceramic and ceramic-to-ceramic seals for over 1000 C in support of plasma source development
- High-temperature superconducting magnet designs with Stirling cycle conduction cooling (liquid-free) in collaboration with SuperPower, Inc., Schenectady, NY

VX-200 basics

Niobium-Titanium superconducting magnet

ICH booster PPU 170 kW (98% efficient)

Plasma plume during tests with thrust target and other plasma diagnostics

Integrated magnet and rocket core in test bus ready for vacuum and plasma performance testing

Ad Astra Rocket Company

Long duration VX-200 "shot"

VX200 at 200kW

Ad Astra Rocket Company

Superconducting magnet manufacturing and cryo-cooler tests

- High-temperature superconducting (HTS) magnet coil prototype development and testing completed in 2007 (Creare, Tai Yang) to TRL-5
- Preliminary design of proto-flight coils complete in 2008 (continuing refinements as HTS product performance improves)
 - 2nd generation HTS vendor is Superpower, Inc (Schenectady, NY)
 - Three vendors have expressed interest in critical design and manufacturing
- Cryocooler baseline model and placement finalized in 2013 preliminary design (Sunpower GT)

Advantages and applications of RF catalyzed MHD

- RF analogous to MHD plasma "turbocharger"
 - High conductivity with lower gas temperatures
 - No impurity addition
- Electrode-less AC extraction is possible
 - Pulsed ionization for reasonably uniform conductivity
- Efficiency enhancement for open cycles
 - Can be added as a topping cycle
 - Coal flue gas from conventional or oxy-fuel
 - Brayton cycles such as natural gas or jet fuel
- Efficiency enhancement for closed cycles
 - Gas cooled nuclear reactors
 - Low mass electrical power generation in space

Key design considerations

- Collisionality plays a strong role in:
 - RF absorption
 - Plasma diffusion and confinement
 - Conductivity characteristics (Hall or Pedersen)
- High conductivity is necessary for good gain
 - Plasma current is proportional to ionization fraction
 - Volumetric and surface recombination limit the maximum ionization fraction
- Gain ($Q_{rf} \equiv P_{mhd}/P_{rf}$)
 - RF power is recovered as heat, but conventional electrical conversion back to coupled RF is likely ~ 30%
 - Q_{rf} must be ~ 10 and the bigger the Q_{rf} the better
 - Preliminary estimates indicate that gains ~100 may be possible with electrode-less power extraction
- Self-consistent MHD currents and fields

Hall or Pedersen?

- Scale lengths are on the order of 1 m
- Practical magnetic fields of this size are ~ 5 T using today's HTS technology
 - Electron cyclotron frequency less than 150 GHz
- Neutral density at a few bar and 1000 C is on the order of 10²⁵ per cubic meter
- Pedersen conductivity is likely to be higher than Hall, but methods to exploit both phenomenon should be considered self-consistently
- Disk geometries may allow inductive pickup of Pedersen currents
- Self-consistent MHD currents and geometry

Key development considerations

- RF power levels must be technologically feasible on a power plant scale
 - P_{rf} on the order of hundreds of kW to a few MWs
 - Broadcast radio power technology is adequate
 - RF coupler configurations in a relevant environment are challenging, but doable with modern ceramics
- Large ceramic parts are becoming readily available but manufacturing is expensive
 - Silicon nitride is a good candidate for this app
 - High-level skill set needed for machining and seals
- Superconducting magnets of appropriate size and field strength must be thermally isolated
 High temperature superconductors with cryocoolers are available but expensive

Questions to consider

- What are the ionization properties of hot flue gas?
 - Oxy-fuel CO₂ stream from coal, hotter is better
 - Geometry to obtain proper expansion and flow
 - Turbulent flow may increase surface recombination rate
- What RF frequency is best?
 - RF injection power and voltage are affected by the RF frequency and geometry at the RF injection location
- What RF coupler geometries are best?
 - Wave accessibility for best power deposition and location
 - Manufacturability and thermal management of the coupler and cavity
- Should MHD power generation by DC or AC be emphasized?
 - DC extraction has significant experience but electrode difficulties
 - AC extraction eliminates electrode arcing in plasma, but little experience, so more experimentation will be needed
 - AC circuit/transformer design for MHD power extraction
- Can large ceramic parts and seals be manufactured?
 - Straight ceramic tubes for RF injection are straightforward (DC or AC)
 - Disk shapes for AC inductive power extraction are difficult but doable
- Will MHD instabilities affect the design?
 - Self-consistent magnetic field geometry