### Magnetohydrodynamics Power Generation Workshop

**Oxycombustion/Oxygen Production** 

### An Oxy-MHD Topping Cycle for Maximum Power and CO<sub>2</sub> Capture

Tom Mikus and Carl-W. Hustad CO2-Global

Presented by Victor Der

Former Assistant Secretary for Fossil Energy (Acting), USDOE

October 1-2, 2014 • Crystal Gateway Marriott - Arlington Virginia

## What is MHD? - the physics



## What is MHD? - a 1980s DoE design



### CO<sub>2</sub> Capture Options for Fossil Energy Generators – MHD

### as Auxiliary Heat and Power





#### Technologies also applicable to:

- Industrial sources (cement, refinery, chemical...)
- NGCC power plants

Source: Cost and Performance Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007.

# An Oxycombustion Power Cycle without MHD



Limits turbine-inlet temperature to 1000°C

## An Oxycombustion Power Cycle with MHD topping



## Added "Efficiency" vs. Output







### **Possible Commercial Applications**

- EOR projects with high power demand
  - smaller scale, lower efficiency
  - utilizing CO<sub>2</sub>
- Utility power with no stack
  - larger scale, higher efficiency
  - storing CO<sub>2</sub>

## How can we do this now?

| 1980s MHD Programs                                             | Now                                                                          |
|----------------------------------------------------------------|------------------------------------------------------------------------------|
| Needed more efficient, robust, stronger and cheaper magnets    | High-temperature superconducting magnets                                     |
| Needed durable insulators, electrodes, heat exchangers         | Metallurgy and ceramic technology are advancing                              |
| Short life for ducting, nozzles, valves                        | Improved computational plasma fluid dynamics                                 |
| Complex power consolidation from<br>plasma to electrical grid  | Computer systems aid in design and power conditioning                        |
| Electrode plasma arcing                                        | Control technologies to enhance fault protection and mitigate arcing         |
| Needed high temperatures air pre-heater or supplemental oxygen | Large-scale commercial ASU or next-<br>generation ITM already in CES process |
| No value for CO <sub>2</sub>                                   | Capture and use of CO <sub>2</sub> , e.g. EOR                                |

## Progress

- Confirmed availability of workable electrodes
- Preliminary design of sized MHD channels
- Scoping design of HT superconducting magnet
- First-pass process-simulation model
- Rough economics

### Plans

- Match MHD channel design to turbine
- Improve overall cycle integration
- Work around 2000-hour electrodes
- Parallel program for 8000-hour electrodes
- Economics for demo and commercial plant
- Small demonstration unit for electrodes
- First-of-a-kind commercial plant

## Acknowledgements

- Shell GameChanger team
  - Financial support
  - Patent support
  - Commercial guidance
- Alumni of the DOE MHD program
  - Technical guidance
  - Identifying available resources