E CORPORATION

> Excellent wetting and bonding to both aluminized metal and YSZ

- Glass is homogeneous
- > No crystals in glass
- > No significant elements from metal or ceramics diffusing into glass > BaAl₂Si₂O₈ layer at glass/metal interface

148 Thermal Cycles (>5,000 hrs) in Air

148 Thermal Cycles (>5,000 hrs) in Wet Forming Gas

Alkali-Free Viscous Sealing Glasses for Solid Oxide Fuel Cells

Cheol-Woon (CW) Kim, Joe Szabo, Ray Crouch, and Rob Baird MO-SCI Corporation, Rolla, MO; ckim@mo-sci.com

Richard K. Brow, Jen Hsien Hsu, Casey Townsend, and Raphael Reis Department of Materials Science and Engineering and the Graduate Center for Materials Research Missouri University of Science and Technology, Rolla, MO; brow@mst.edu

Objectives

	Phase II					
	Glass 73	Glass 75	Glass 77	Glass 102		
vstem	BaO-RO-Al ₂ O ₃ -B ₂ O ₃ -SiO ₂					
neasured from CTE curve	624	623	625	604		
etric T _s (°C)	640	650	656	639		
500°C (/°C)	8.48x10 ⁻⁶	8.17x10 ⁻⁶	9.25x10 ⁻⁶	7.25x10 ⁻⁶		
s T (°C)	800	810	810	Non-Crystallizing		

Stable Viscosity

Re-Sealing Tests (ex-situ)

Glass 73-Coupon: Thermally cracked and healed

64.13

57.18

606

593

-3.5

-3.3

G73

G102

Long-Term Reactivity Characterization-isothermal whether the share when the states of the sta 2280 hrs at 800°C in air xcellent wetting and bonding Glass is homogeneous No crystals in glass
No significant elements from metal or ceramics diffusing into glass BaAl₂Si₂O₈ layer at glass/metal interface 4000 hrs at 800°C in air Glass 102 HV curr WD det mag ⊞ -------- 20 j

> Viscosity measurements provide valuable performance information

'g(C)						
oilatometer	11	9	6.6	4	2	
624	621	654	706	788	887	
604	610	647	706	800	916	

Volatility Platinum Boat (samp Volatility of Glasses 🔓 1.0E+09

\succ Summary of re-sealing tests (ex-situ)

	Temperature	Time (hr) Viscosity, log η		Observation	Visc
	(°C)		(Pa-s)	(# of experiments)	η
G73	800	2	3.6	Healed (6 tests)	
	750	2	5.0	Healed (2 tests)	
	725	2	5.8	Healed (3 tests)	
	700	2	6.8	Healed once, but	
				not a second time	
	850	2	3.0	Healed (1 test)	
G102	800	2	4.0	Healed (1 test)	
	775	2	4.6	Healed (1 test)	
	773	2	4.6	Healed (1 test)	
	750	2	5.2	Healed (1 test)	
	744	2	5.4	Healed (2 tests)	
	740	2	5.5	Not healed (2 tests)	
	736	2	5.6	Not healed (1 test)	
	730	2	5.8	Not healed (1 test)	
800					
	N	1		1	5

G102 cracked by thermal quenching

G102 crack healed after re-heating to >744°C for 2 hrs

Crystal Growth Kinetics Depend on

Summary

- > We have developed an alkali-free Ba-borosilicate glass that resists crystallization under SOFC operational conditions
- > We have produced hermetic seals with SOFC components - survive thermal cycling
 - reseal when thermally shocked
- > These glasses can react with aluminized stainless steel and celsian (BaAl₂Si₂O₈) will form under SOFC operational conditions

Acknowledgements

- > SECA
- > DOE SBIR Phase II Contract # DE-SC0002491
- DOE Project Officer: Dr. Joseph Stoffa, NETL
- > Dr. Yeong-Shyung Matt Chou/Dr. Jeff Stevenson, PNNL

DOE SBIR Phase II Contract # DE-SC0002491