

Electrodeposited Mn-Co Alloy Coating For SOFC Interconnects

H.A. McCrabb¹, Savidra Lucatero¹, T.D. Hall¹, H. Zhang², X. Liu², S. Snyder¹, and E.J. Taylor¹

¹Faraday Technology Inc., 315 Huls Dr., Clayton, OH 45315, USA

²West Virginia University, Dept. of Mechanical and Aerospace Eng. ESB, Morgantown, WV, 26506, USA

Overall Objective Technical Results Previous Accomplishments Long-term On-cell Performance Evaluation Varying Cobalt Concentration Develop, optimize & validate an inexpensive manufacturing 20:1 Co:Mn 5:1 Co:Mn process for coating metallic SOFC interconnects with Co and Mn. **Button Cell Dimensions** Cell Test Fixture Introduction ← 3/4in.→ Reducing SOFC operating temperatures below 1000 °C has permitted less resistive and expensive ferritic stainless steel interconnects to manning replace ceramic materials. However, even specially developed ferritic MICA Gaske alloys operated at elevated temperatures for lengthy periods of time $(Co, Mn)_3O_4$ coated form a chromia scale that increases the interconnect resistance and **Tube Flang** 441 stainless steel button cell Pt Mesh results in chrome diffusion from the interconnect to the cathode that **Contact Paste** causes a reduction in cathode performance. One attractive method to Minor Cr diffusion Minor Cr diffusion resolve the chromia scale growth and diffusion issues is to Current Lead electrodeposit a Mn-Co alloy coating onto the interconnect surface **2000 Hour Thermal Soak** and subsequently convert it to a $(Mn,Co)_3O_4$ spinel. Top: coated Under funding from the Department of Energy, Faraday Technology and WVU are developing, optimizing and validating an *Constant Current Performance* (0.5 A cm⁻²) electrodeposition process to apply Mn-Co alloy coatings to SOFC

interconnects. The FARADAYIC[®] Electrodeposition Process is used to deposit a Mn-Co alloy that is subsequently oxidized to a spinel by thermal exposure at high temperatures in an oxidizing environment. Coatings exposed to extended thermal soaks exhibited relatively dense, crystalline microstructures that prevented chrome diffusion through the coating and maintained low area specific resistance. Faraday has scaled its process capabilities to industrial size SOFC interconnects with gas flow features.

Approach

The appropriate waveform can alter the thickness of the pulsating diffusion layer and effectively focus or defocus the current distribution to create non-uniform or uniform deposition respectively.

← Macroprofile: Diffusion layer tends to follow the surface contour. Mass transport control results in a uniform current distribution or a conformal deposit during deposition.

1.2 -

Left) Mn-Co alloy coating, Right) After exposure to a 95% H₂/5%N₂ atmosphere for two hours at 800 °C with a 4 °C min⁻¹ ramping & cooling rate & a 50% $H_2/50\%N_2$ ramping & cooling atmosphere

Sample No.	2 hour thermal soak pre-treatment	Mn-Co coating thickness (μm)	Chromia scale thickness (µm)	ASR (mΩ cm ²)
1132H	H ₂	12	5	27.6
1133H	Air	17	4	29.1
1135H	Air	14	5	30.6
1136H	H ₂	16	6	21.6
1137H	Air	15	5	26.0

Planar and patterned interconnects ranging from $100 - 225 \text{ cm}^2$ Stainless steel alloy & proprietary Coatings from a few microns to 50 µm Contained proprietary flow fields • Varying ratios of Co:Mn Have received reports of good adhesion and ductility for the oxide coatings • ASR reported in the range of 10 - 20 $m\Omega \ cm^2$ • Stack testing next

Economic Analysis

Current cost analysis of coating process based upon batch manufacturing of 1,600,000 plates per annum at a cost of ~\$0.98 per 625 cm² coated interconnect.

10 µm thick cathode coating*

The FARADAYIC® Electrodeposition Process

← Microprofile: Diffusion layer thickness surface roughness. Mass transport control results in a non-uniform current distribution.

The FARADAYIC[®] Electrodeposition process...

- Enables alloy composition control
- Enables control of coating uniformity for flow field patterns
- Maintains fast processing times to enable high throughput manufacturing
- Is an inexpensive manufacturing process for SOFC interconnect coatings

	Milestones				
Fiscal Year	Title	Planned Completion	Percent Complete		
2011	1. Design/modification of 10" x 10" electrodeposition cell	May 2011	100%		
2012	2. Long-term high temperature, thermal evaluation	September 2012	100%		
2012	3. Process development for 4"x4" planar interconnects	May 2012	100%		
2013	4. Process development for 4"x4" pattern interconnects	June 2013	100%		
2013	5. Long-term on-cell performance evaluation	August 2013	100%		
2013	6. Qualification/demonstration of IC in single cell test rig	September 2013	50%		

Processing Equipment

Electrochemical Cell

Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401; 7,947,161; 8,226,804)

ACID

FARADAYIC® Electrodeposition Cell Features:

Cathode side only or cathode and anode side coatings Interconnect coatings of various shapes and size ranging from $6.5 \text{ cm}^2 - 645 \text{ cm}^2$

Cost is ~\$1.72/IC for cathode and anode side coating

Accomplishments/Future Work

FY 2013 Accomplishments

- Completed long-term on-cell performance evaluation of button cells
- Updated economic cost evaluation
- Delivered coated interconnects to commercial partners for performance evaluation via SOFC stack testing

Future Work

Qualification/demonstration of interconnect coating in single cell test rig under ideal SOFC operating conditions by potential commercial partners

Acknowledgements

This material is based upon work supported by the Department of Energy under Grant No. DE-SC0001023 . Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.

Principal Investigator: Heather McCrabb, Company Name: Faraday Technology, Inc., Address: 315 Huls Drive, Clayton, OH 45315, Phone: 937-836-7749, E-mail: heathermccrabb@faradaytechnology.com, Company website: faradaytechnology.com