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Advantages
* Long operation: >50,000 hours

* High Efficiency: >65% with cogeneration

* Fuel Flexibility

Challenges

 High temperature operation

* Thermal expansion mismatch

e Sealing difficulty — cross leaks

| Degradation of stack components

_/\

One potential degradation
mechanism is degradation of cathode
materials (eg, LSCF.) by gas phase
impurities such as CO, and H,0,

_including from crass leaks




Questions

 What happens to the surface of the LSCF cathode
upon exposure to air side impurities such as CO,
and H,O present in trace quantities?

* What happens to the cathode when there are
larger scale accidental cross-leaks from the
anodic side due to compromised seals and/or
leaks from large numbers of pinholes?

 What are the implications for cell performance
including long term performance?



Experimental: Thin Film Deposition LSCF-6428 on
NdGaO, (NGO)
* Pulsed Laser Deposition (PLD) at Environmental

Molecular Sciences Laboratory (EMSL) at Pacific
Northwest National Laboratory (PNNL).

Substrate heater

Target (under plate)
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Thin Film Characterization LSCF-6428 on NGO
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X-ray diffraction shows good alignment and the SEM image shows
clean interfaces at the film/substrate.
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Total Reflection X-ray Fluorescence (TXRF)
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Real-Time TXRF Analyses of LSCF-6428
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Mechanisms of Enhanced Kinetics of Sr Surface Segregation

 Step 1. SrfromLSCF lattice + % O, = SrO (by Sr Surface Segregation)
e Step2. SrO+CO, — SrCO, AG" =-230,290+161.43T (J/mo)

Equilibrium pCO, as Function of T
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Bulk Phase




Bulk Phase with Oxygen Vacancy

0.125

Oxygen vacancy, &




Surface Phase




0.125

t]

Surface Phase with Oxygen Vacancy
Oxygen vacancy, &




Bulk Phase
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Bulk Phase with Oxygen Vacancy
6=0.125
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Surface segregation in the absence of
CO,

Surface Phase with Oxygen Vacancy
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Surface carbonate formation
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Atomic Force Microscope (AFM) Analyses

30% CO, 2x2um?

Roughness Number of Average Base Surface
RMS Particles Diameter of Area Coverage
(nm) per pm? Particles (um) Ratio (%)
30% CO, 5.59 10.25 0.276 61.3%
“CO,-free” 4.18 12.63 0.111 12.2%




HAXPES analysis of Sr3d;,, & Sr3d;),
orbitals

* hv=2140eV.

. . Surface Peak
 Doublet from spin orbit

splitting

Bulk Peak

e Surface Sr 3d signal
consistent with:

Sr-O 133.0eV

3.8

Sr-CO, 134.0eV* |

*P.A.W van der Heide, Surf. Interface Anal. 2002



Consensus on Sr segregation

* Sr segregation occurs in the case of LSCF

* Need to distinguish between enrichment/depletion
due to the usual space-charge effect present at grain
boundaries and surfaces of all ionic materials, and
actual precipitation and formation of second phases.

e SrO formation indeed occurs in the case of LSCF.



More Pic (if needed)

Feedback System View inside the hutch



il
‘; ‘ C(LINDER | g,
[ s |

e
At USE

View outside the hutch



Monitoring the Temp



Additional slides (for questions)



NGO unit cell
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Table: LSCF lattice parameters (cubic structure)

- Lattice C(nm) 0.3893 0.3886

J(@>+b*)=0.773nm

LSCF (NGD(A10)GO (110)
top view

X2 (nm) 0.7786 0.7772 N/A



Energy Resolving Fluorescence
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Method of TXRF Analysis
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Reason for SSS

The different vacancy-formation energies of the
components.

The elastic strain energy due to lattice distortion
around a defect.

The effect of the ambient atmosphere.

The macroscopic electrostatic potential, which appears
as a consequence of the locally non-stoichiometric
charged species.

The effect of surface energy.

The energies due to the interactions between the
defects




2 Pathways for Oxygen Reduction Reaction...

a)  Single-phase electronic conductor

b) Single-phase ¢) composite of ionic
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Patterned electrode experiments
(LSCF- 6428)

Cathode

IR

“2D Numerical Model for Identification of Oxygen Reduction Reaction Mechanisms in Patterned
Cathodes of La ;¢Sr ; 4,Co (,Fe, 0 55" LJ.Miara, S.N. Basu, U.B.Pal, and S.Gopalan,

J.Electrochem.Soc., 159 (8) F419-F425 (2012)




Surface diffusion versus bulk diffusion
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Implications for SOFCs

Prior work shows that bulk diffusion is more important at lower oxygen
partial pressures, presumably due to higher oxygen vacancy
concentrations.

Prior work also shows that at lower temperatures, bulk diffusion is more
dominant, in contradiction with expectations.

The present work on the surface chemistry of Sr segregation and the
attendant SrO and SrCO, provides a plausible explanation.

Does the formation of these second phases inhibit surface diffusion
thereby forcing the oxygen transport through the bulk pathway even at
lower temperatures?

Experimental work underway to answer these questions.



Ongoing work

e Cathodes with lower Sr dopant levels and
alternate cathode materials (e.g. BSCF)

* Impedance measurements in air passed
through CO, getter and comparison to CO,
containing atmospheres

* Time studies to understand longer term
effects
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