# Solid Oxide Fuel Cell Power System Development DE-FE0001179

R. Kerr

Delphi

15th Annual Solid State Energy Conversion Alliance (SECA) Workshop

July 22-23, 2014 Sheraton Station Square Hotel Pittsburgh, PA



### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing



### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing



### Gen 3 and Gen 4 Stacks



Gen3 9 Kg, 2.5 liters for a 30-cell stack, 1.5 kW





Gen4 57.5 Kg, 17.5 liters for a 38-cell stack, 7 kW

### Performance Highlights Summary

- Fabricated 1,263 cells and 43 stacks of various Gen 3 and Gen 4 configurations in the past year
- Demonstrated over 5,000 hours continuous NOC durability on Gen 3 stacks and Gen 4 stack
  - Gen 3, 30-cell stack degradation rate demonstrated at 0.77%/1000 hrs
  - Gen 4, 40-cell stack degradation rate demonstrated at 1.1%/1000 hrs
- Completed 170 full thermal cycles on Gen 4 stack with less than 2% voltage degradation, and 110 full thermal cycles on a second Gen 4 stack with no measurable voltage degradation
- Completed investigations:
  - Redesigned Gen 4 stack loading mechanism for durability/cyclability
- System testing
  - Tested two multi-stack (3) power systems in test furnace
  - Progress on nine-stack power system test



### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing



### Nyquist Plots After 800 Hours

- •NETL infiltrated four Delphi Gen 3 cells with either of two cathode infiltrants
- •The four cells were built into a nine cell stack with five standard cells
- •The stack has been operated with a variety of "constant current" conditions (approaching 3,000 hrs)







### Cell Performance Changes at 1,500 Hrs





Increase in Cell Resistances at 1,500 hrs



Cell

**DELPHI** 

### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing



### Development of Improved Loading Design for Gen 4 Stacks

#### Accelerated testing provided through thermal cycling

- From near RT to operating temp and back to near RT
- Electrochemical performance monitored by one hour constant NOC current test at each thermal cycle
- Thermal cycle duration about 10 hours
- Off-stand stack leakage monitored at start of test, at varied intervals during the test, and at end of test

#### Stack G080

Gen 4, 30-cell stack with standard loading mechanism

#### Stack G040

Gen 4, 30-cell stack with loading provided through the test stand

#### Stack G079

Gen 4, 40-cell stack with improved loading mechanism



### Stack G080 Thermal Profile During Thermal Cycle 1



### Stack G080, Thermal Cycle 1



### Thermal Cycle Performance of Gen 4, 30-Cell Stack G080





### Thermal Cycle Performance of Gen 4, 30-Cell Stack G040

#### Stack G040 Thermal Cycle Constant Current Performance



### Thermal Cycle Performance of Gen 4, 40-Cell Stack G079





### Stack Leakage Summary After Thermal Cycling

#### Stack G079

- 40-cell Gen 4 stack
- Improved loading mechanism
- Thermal cycled 170 cycles
- No repeating unit to repeating unit seal leakage measured
- Sheet metal component found to be cracked and exhibiting measurable leakage



### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing

### Gen 3, 30-Cell Stack Constant NOC Current (5,243 Hrs)



### Gen 3, 6-Cell Stack Constant Current (6,870 Hrs)



### Gen 4, 40-Cell Stack Constant NOC Current (5,909 Hrs)



### Gen 4, 40-Cell Stack Constant NOC Current (~2,400 Hrs)



#### Outline

- Summary Highlights of Past Year
- Cell Testing
- Stack Testing
  - Thermal Cycling
  - Constant Current
- System Development and Testing



# Thermally Self-Sustaining, Multiple Stack Systems

|        |           |       |             |           | Rated   |                         |                    |
|--------|-----------|-------|-------------|-----------|---------|-------------------------|--------------------|
|        |           | Stack | Number of   | Number    | System  | Electrical              | Hot Zone           |
| System | Timeframe | Туре  | Cells/Stack | of Stacks | Power   | Configuration           | Instrumentation    |
|        |           |       |             |           |         |                         |                    |
|        |           |       |             |           |         |                         | Thermocouples - 51 |
|        |           |       |             |           |         | Two Stacks in Parallel, | Pressure Taps - 17 |
| Α      | Q3 2013   | Gen 3 | 29          | 3         | 4.5 kW  | One Independent         | Voltage Leads 12   |
|        |           |       |             |           |         |                         |                    |
|        |           |       |             |           |         |                         | Thermocouples - 32 |
|        |           |       |             |           |         |                         | Pressure Taps - 16 |
| В      | Q2 2014   | Gen 3 | 29          | 3         | 4.5 kW  | All Stacks in Series    | Voltage Leads 6    |
|        |           |       |             |           |         |                         |                    |
|        |           |       |             |           |         |                         | Thermocouples - 23 |
|        |           |       |             |           |         | Stacks in Series-       | Pressure Taps - 4  |
| С      | Q3-4 2014 | Gen 3 | 29          | 9         | 13.5 kW | Parallel Architecture   | Voltage Leads 10   |



### Stack Initial Performance Results, System A









## Stack Temperature & Power, System A



# Stack Performance, System A



### Stack Initial Performance Results, System B







# Stack Voltage and Temperature, System B



## Stack Performance, System B



## SECA System C Mechanical Schematic



### SECA System C Electrical Schematic

Three (3) stacks connected in series in each module and three (3) modules of three (3) stacks each connected in parallel

Stacks in series providing ~ 90 VDC and ~ 60 amps per module



### System C Module End of Line Voltage and Temperature Test



## System C End of Line Module Flow Test



### Acknowledgements









Pacific Northwest National Laboratory
...delivering breakthrough science and technology

Thanks to Joe Stoffa, Briggs White, and Shailesh Vora of the DOE for their support and technical guidance

