Study of the Durability of Doped Lanthanum Manganite Cathode Materials under "Real World" Air Exposure Atmospheres

P. Singh,¹ R. Ramprasad,¹ M. K. Mahapatra,¹ B. Hu,¹ V. Sharma,¹ S. T. Misture,² and N. Q. Minh³

¹Department of Materials Science and Engineering & Center for Clean Energy Engineering, University of Connecticut, CT ²Materials Science and Engineering, Inamori School of Engineering, Alfred University ³Center for Energy Research, University of California San Diego

WORK PERFORMED UNDER AGREEMENT DE-FE - 0009682

15th Annual SECA Workshop July 22-23, 2014, Pittsburgh, PA

Technical Contributors

UConn:

Manoj K Mahapatra Rampi Ramprasad Prabhakar Singh Vinit Sharma Boxun Hu Michael Keane

Alfred U:

Scott Misture Doreen Edwards Kyle McDevitt

UCSD:

UCONN.EDU

Nguyen Minh Imran Yashin Assistant Professor in Residence Professor Professor Post-doctoral fellow Post-doctoral fellow Graduate Student

Professor Professor and Dean Graduate Student

Professor Graduate Student

Outline

- Accomplishments
- Background
- Experimental
 - Role of Humidity and CO2 on LSM and LSCF cathodes
 - Electrochemical performance
 - Post-test analytical study
- Results and Discussion
- Future Work

UCONN.EDU

Acknowledgements

Ambient Air Constituents

Gas	Concentration	
Oxygen	20.9 v%	
Nitrogen	78 v%	
Water	<1 to 3 v%	
Carbon dioxide	350 ppm	
Sulfur dioxide	<1 ppm	
Noble gases	<1 v%	
Particulate matter (PM)	<50 μg/m³	

Air in fuel cell stack and system may also contain component derived impurities such as Cr (from metals and alloys) and Si, B, and alkali (from glass and insulation).

Project Objectives

Mechanistic understanding of lanthanum manganite and lanthanum cobaltite cathode degradation in 'real world' air exposure during SOFC operation

Dopants, Electric polarization, Gas phase contaminants (H_2O , CO_2 , Cr-vapor species, stoichiometry)

Tools: EIS, DC conductivity, XRD, SEM, X-ray absorption spectroscopy, XPS, SIMS, TEM, HTXRD **Compound formation (Solid-solid/solid-gas reactions)** dopants exolution and oxides segregation at surface

- oxides and compounds at interface
- crystal symmetry
- microstructure
- ✓ Micro-cracking and/or delamination

Background

- In "real world" environment, cathode remains in intimate contact with electrolyte and interconnect at 750-900°C to air which contains H₂O, CO₂, H₂S/SO₂ etc. The nominal intrinsic impurities in air contain ~3% H₂O, ~400 ppm CO₂ and 0.05-0.15 ppm SO₂
- Bulk and interfacial stability of cathode due to solid-solid and solid-gas interactions significantly contributes to the performance losses and degradation in planar SOFC stacks.

Two key factors:

- Polarization losses at cathode/electrolyte interface
- Ohmic and contact losses at cathode/ interconnect interface, especially with metallic interconnect
- Poor contact (reduced contact area) between ceramic cells and metallic interconnects (even with use of contact paste) resulting in higher Ohmic loss.

Contributing factors for poor contact:

- ✓ Thermodynamic driving force
- Operating characteristics (temperature distribution, thermal expansion mismatch, impurities in inlet air)
- Formation of interfacial compound and morphology change

Solid-solid and solid-gas chemical interactions and elemental migration across bulk/interface also increases ohmic resistance due to insulating compounds formation and oxide segregation at the interface cathode/electrolyte and cathode/interconnect interface, and bulk cathode as well as well as at the surface.

Background

Cathode contributions: SOFC performance degradation

Accomplishments

- Electrochemical testing of LSM/YSZ/LSM symmetric cells in humidified air and CO₂/ air has been conducted and post-test analytical study (XRD, SEM-EDS, XPS, FTIR) have been performed.
- □ Electrochemical testing of LSCF/GDC/LSCF symmetric cells in CO₂/air has been conducted and post-test analytical study (XRD, SEM-EDS) has been performed.
- □ A1500-hour test of the LSM/YSZ/LSM symmetric cell has been performed in 3% H_2O and 0.5% CO_2 containing air. The findings include:
 - ✓ SrO/Sr(OH)₂ contribute to the cathode electrochemical degradation in humidified air.
 - ✓ Formation of (Sr/La) carbonates lead to the cathode degradation in CO_2 /air.
 - ✓ LSM cathode degradation is more in humidified air than that in CO_2/air . Cathodic pre-activation in dry air minimizes the degradation. The effect of ≤0.5% CO_2 in air on LSM degradation is not measurable.
- Mechanisms for LSM cathode degradation in humidified air and CO₂/air have been developed and documented.

Technical Findings

- Presence of H2O and CO2:
- SrO segregates on LSM electrode surface in humidified air.
- Compound formation and segregation increase with water content and electric bias.
- Exposure of LSCF to Air-CO2 (10%) shows degradation. Further structural analysis is in progress.
- Carbonate (Sr/La) reaction products are not expected to form in ambient air (~400ppmCO2).
- Solid-solid and solid-gas interaction also increases ohmic resistance due to insulating compound formation and oxide segregation .
- LSM cathode performance during exposure to Air-CO₂ (10%) shows initial degradation.
- LSM cathode pre-activated in air reduces degradation during subsequent exposure to 10% CO2-air
- Effect of CO₂ on the LSM stability is less pronounced than that of H₂O.
- Simultaneous exposure of LSM to 3%H₂O and 0.5% CO₂ in atmospheric air shows degradation. Further analysis is in progress.
- CE/MI interface ohmic resistance a major contributor to stack performance losses
- Stack performance and ohmic resistance not affected by 0.1% CO₂ and saturated H₂O in air in short term tests
- Coarsening of cathode microstructure, especially cathode surface, in long-term exposure at 800°C (indicating potential of CE/MI interface contact evolution during long-term operation)

LSM-YSZ Interactions

- Addition of Ni and (Ni + Ca) to LSM eliminates YSZ phase transformation / degradation in air
- H₂O presence minimizes YSZ phase transformation
- Ni additions cause ~10% $La_2Zr_2O_7$ formation. (Ni+Ca) additions cause ~5% $La_2Zr_2O_7$ formation vs. ~3% for base LSM **computational study**:
- The surface cation chemistry in $(La, A)MnO_3$ (A = Ca, Sr and Ba) has been studied using first-principles thermodynamics.
- Surface remains significantly enriched with dopants under all realistic conditions.
- Over a wide range of $T-pO_2$ conditions the cation surface segregation is favored.
- With increasing dopant size the tendency for cation surface segregation increases.

Temperature : 750-850C Time : 100 hrs. to >1000hrs. Bias : 0 &0.5 V H2O level : 0 -10%; CO2 level : 0 - 10% H2O+CO2 : above combination. Air electrode: LSM, LSCF Electrolyte : YSZ, GDC

Impact and Technical Significance

- Observations and mechanistic understanding of chemical and morphological changes, derived from long term experiments, provide pathway for optimizing SOFC air electrode.
- Long term tests in CO₂ containing air atmospheres show LSM air electrode to remain chemically and structurally stable. Presence of H2O (RT saturated), however, show LSM to be susceptible to morphological changes.
- Studies provide insight into destabilization of YSZ
- The guideline for the selection of dopants obtained from DFT calculation is helpful in selecting suitable dopant and minimize strontium segregation issue.

Publications, Outreach

Publications/Presentations:

- Boxun Hu, Michael Keane, Manoj K. Mahapatra, Prabhakar Singh" Stability of strontiumdoped lanthanum manganite cathode in humidified air" <u>Journal of Power Sources</u> 248, 196-204, 2014
- Boxun Hu, Manoj Kumar Mahapatra, Michael Keane, Heng Zhang, and Prabhakar Singh "Effect of CO₂ on the Stability of Strontium Doped Lanthanum Manganite Cathode" <u>Journal</u> <u>of Power Sources</u> 268, 404-413, 2014
- 3. Vinit Sharma, M.K. Mahapatra, P. Singh,& R. Ramprasad: Cationic surface segregation in doped LaMnO3, submitted to <u>surface Science</u> 2014
- Manoj K. Mahapatra, Prabhakar Singh, Kyle McDevitt and Scott T. Misture, "Interfacial reactions of Mn-containing cathodes on YSZ electrolytes," <u>Materials Research Society</u> Spring Meeting 2014

Outreach:

- . Industries : LG Fuel cells, FCE
- STEM: K-12, Undergraduate internship (2)
- State Organization: CT DEEP
- 4. National Laboratory: PNNL
- 5. Training: 3 Post-doctoral Fellows, 3 Graduate students

WW.ENERGY.UCONN.ED

Experimental

2.<u>5 c</u>m

RGY.UCONN.EDU

LSM/YSZ/LSM cells

Facilities for the stability tests

Screen printing

1. Reactor

- 2. Water Syringe pump
- 3. VMP2 Multichannel potentiostat

Temperature : 750-850C Time : 100 hrs. to >1000hrs. Bias: 0 & 0.5 V H2O level : 0 -10% CO2 level : 0 -10% H2O+CO2 : above comb. Air electrode: LSM, LSCF Electrolyte : YSZ, GDC

LSM Degradation Mechanism in Humidified Air

Illustration of the degradation of the LSM electrode in humidified air

A: SrO incorporation in the LSM lattice during activation: $V_{La}^{\prime\prime\prime}$ + SrO + $3Mn_{Mn}^{\cdot}$ + e' \leftrightarrow Sr'_{La} + 0.5O₂ + $3Mn_{Mn}^{x}$ (1)

B: SrO segregation from the LSM lattice: $H_2O + Sr'_{La} + 2O_O \rightarrow SrO + V'''_{La} + 2OH'_O$ (2) without bias $1.5H_2O + 0.75O_2 + 3e' \rightarrow 3OH'_O + V'''_{La} + V'''_{Mn}$ $Sr'_{La} + 3OH'_O + V'''_{Mn} \rightarrow 1.5SrO + 1.5H_2O + 0.5V'''_{La}$ $Sr'_{La} + 0.5O_2 + 2e' \rightarrow SrO + V''_{La}$ (3) $Sr'_{La} + 3OH'_O + V'''_{Mn} \rightarrow 1.5SrO + 1.5H_2O + 0.5V'''_{La}$

B. Hu, M. Keane, M. K. Mahapatra, P. Singh, Stability of strontium-doped lanthanum manganite cathode in humidified air, J. Power Sources, 248, (2014) 196-204.

Electrical Performance of LSM/YSZ/LSM cells

- H2O in air is more detrimental on the cell performance than CO2 in air.
- CO2 ≤0.5% in air has no/negligible effect.

CONN.EDU

Cell performance degradation is not discernable for 10% CO2 in air for the cell preactivated in air.

LSM Cathode Morphology in Humidified Air

UCONN.EDU

XPS analysis results of the LSM cathodes

Sample	Water%	Sr/La	Sr/(Mn+La)
		Molar ratio	Molar ratio
Pre-test LSM	0	0.23 ± 0.01	0.13 ± 0.01
Post-test LSM	10	0.34 ± 0.02	0.21 ± 0.01
Post-test LSM	20	0.58 ± 0.04	0.24 ± 0.01
Post-test LSM	50	1.89 ± 0.09	0.76 ± 0.04

Morphology of LSM cathode at 850°C for 100 h without bias and with 0.5 V bias

LSM Cathode Morphology in CO₂- Air

SEM images of the post-test LSM cathode in 10% CO₂/Air for 100h.

segregation at the cathode surface for as-fabricated sample

JCONN energy.uconn.edu segregation (SrCO₃) decreases with increase in temperature in 10% CO₂/air

Spectroscopic study of LSM cathode

Auger depth profiling

ENERGY.UCONN.EDU

LSM Surface rich in Sr and carbon (about 30-40 nm), indicating the existence of SrCO₃

FT-IR patterns of the post-test LSM cathode in 10% CO2-air with 0.5 V for 100 h (750C)

Thermochemical Analysis

Gibbs free energy of the carbonate formation

LSM degradation in CO₂

 $V_{La,LSM} + SrO + 3Mn_{Mn,LSM} + e' \leftrightarrow Sr_{La,LSM} + O_{o,YSZ}^{x} + 3Mn_{Mn,LSM}^{x}$

 $O^x_{\text{O},\text{LSM}} + 2\text{Mn}^x_{\text{Mn},\text{LSM}} + V^{\bullet\bullet}_{\text{O},\text{YSZ}} + 2e^\bullet \leftrightarrow V^{\bullet\bullet}_{\text{O},\text{LSM}} + 2\text{Mn}^x_{\text{Mn},\text{LSM}} + O^x_{\text{O},\text{YSZ}}$

Observation I: The electrical performance of LSM cathode initially increases in CO_2 -air : It is known that the LSM surface is SrO enriched. The change in cathode performance during initial testing in CO_2 -air can be explained similarly as LSM activation mechanism in dry air. With cathodic bias (0.5 V), SrO incorporates into the LSM lattice and oxygen vacancies form at the LSM .

Observation II: The electrical performance of LSM decreases after initial activation and remains unchanged for the remaining test period. SrO at the surface reacts with CO_2 to form $SrCO_3$ simultaneously with the CO_2 adsorption. $SrCO_3$ at the surface may block oxygen adsorption sites and subsequent desorption, decreasing the cathode performance. Once the SrO at the surface is incorporated completely into the LSM lattice during activation stage, no more $SrCO_3$ may form at the surface to block sites for oxygen reduction reaction. As a result, the performance does not degrade further with time.

Observation III: The electrical performance of LSM does not decrease in CO_2 -air for the samples pre-activated in air. After the activation of LSM in air, the $SrCO_3$ content will not increase due to absence of SrO at the LSM surface. As a result, the electrical performance does not decrease.

Boxun Hu, Manoj Kumar Mahapatra, Michael Keane, Heng Zhang, and Prabhakar Singh "Effect of CO₂ on the Stability of Strontium Doped Lanthanum Manganite Cathode" <u>Journal of Power Sources</u> 268, 404-413, 2014

Single Cell (Ni-YSZ/YSZ/LSM) Stack Setup

Gas Manifolds

CONN nergy.uconn.edu

Button Cell Design

Photograph of Fabricated Cells

Performance of Single Cell Stack in different atmosphere

Performance as well as ASR is comparable in air, $0.1\%CO_2/air$, and air with H_2O (~3%)

Time (h)

JCONN energy.uconn.edu

I-t plots of the LSCF/GDC/LSCF cells at 750°C with 0.5 V bias

LSCF Cathode Morphology in Air-CO₂

JCONN energy.uconn.edu

Three LSCF/GDC/LSCF cells have been tested at 750°C with 0.5 V bias for 100 hours. Intent of segregation (Sr /La Carbonate) increases with CO₂ contents in air

Computational Details

UCONN EDU

- Density Functional Theory (DFT) as implemented in Vienna *ab initio* Simulation Package (VASP) is used.
- Exchange-Correlation: Perdew-Burke-Ernzerhof (PBE).
- For undoped LMO- MnO₂ terminated surfaces are energetically favored.
- In the presence of dopants LaO-terminated surfaces are favored.
- LaO-terminated (001) surfaces are considered.
- In (3x2) surface unit cell two La atoms are substituted by Sr.

Surface chemistry of (La, A)MnO₃

We investigated the surface cation chemistry in $(La, A)MnO_3$ where A=Ca, Sr or Ba when exposed to pure oxygen using first-principles thermodynamics.

Schematic representation of the surface segregation (La,A)O terminated slab.

NERGY.UCONN.EDU

Formation energy

$$E_{\{n_D, n_{Ovac}\}}^{f, Surf/Bulk} = \left(E_{\{n_D, n_{Ovac}\}}^{Surf/Bulk} - E_{\{n_D, n_{Ovac}=0\}}^{Bulk}\right) + \frac{n_{Ovac}}{2}\mu O_2$$

Top-view and side-view of the (La,A)O terminated

(001) surface model.

Cationic surface segregation under O₂ environment

- Surface remains significantly enriched with dopants under all realistic conditions.
- Over a wide range of *T*-*pO*₂ conditions the cation surface segregation is favored.
- Under low O₂ pressures and/or high T the segregation behavior is suppressed.
 With increasing dopant size the tendency for cation surface segregation increases.

Vinit Sharma, M.K. Mahapatra, P. Singh,& R. Ramprasad: Cationic surface segregation in doped LaMnO3, submitted to surface Science 2014

CENTER FOR

Model details

Initial

Final

> The water molecule dissociates into two adjacent hydroxyl groups.

The two hydroxyl groups are tilted toward each other, suggesting the formation of a hydrogen bond.

Work in progress

JCONN.EDU

Effect of water on cation surface segregation.

How Oxygen vacancies affect the cation surface segregation in presence of water.

Summary

- The surface cation chemistry in (La,A)MnO₃ (A = Ca, Sr and Ba) has been studied using first-principles thermodynamics.
- Surface remains significantly enriched with dopants under all realistic conditions.
- Over a wide range of $T-pO_2$ conditions the cation surface segregation is favored.
- Under low O_2 pressures and/or high *T* the segregation behavior is suppressed.
- With increasing dopant size the tendency for cation surface segregation increases.
- Dissociative absorption of water on (La,A)O-terminated surface in energetically more favored.

Impact of 3% H₂O: Accelerated condition of 1350°C

- Water inhibits the degradation to tetragonal YSZ
- > Ni and Ni + Ca inhibit degradation

ENERGY.UCONN.EDU

Optimized fitting of the pattern

ENERGY.UCONN.EDU

Synchrotron data from BM-11 at APS for the MnO-YSZ sample reacted at 1400°C for 12 hours

Cubic YSZ transforms partially to tetragonal polymorph due to LSM/YSZ and YSZ/MnO₂ interaction

Rhombohedral to orthorhombic transformation

1350°C, **10%** CO₂ in air: Ca-modified LSM transforms quickly to orthorhombic. (Ca+Ni) stabilized LSM transform partially to the orthorhombic form over 500+ hours. Probably related to Mn oxidation state changes.

Ni substitution increases La₂Zr₂O₇ formation for 10% CO₂ in air

Summary and Conclusions

- Ambient CO2 level is considered benign for the Sr /La carbonate formation
- Surface segregation of SrO/ SrCO3 have been observed on LSM during exposures to H2O and CO2. Compound formation and segregation increase with water content and electric bias.
- Effect of CO₂ on the LSM stability is less pronounced than that of H₂O.
- Addition of Ni and (Ni + Ca) to LSM eliminates YSZ phase transformation / degradation in air, however, cause La₂Zr₂O₇ formation.
- With increasing dopant size the tendency for cation surface segregation increases.

Work in Progress

- ✓ Electrochemical testing of LSM and LSCF in Air-CO2-H2O atmospheres
- In situ XRD study to precisely detect the phase evolution and structural changes of LSM and YSZ resulting from solid-solid and solid-gas interaction in CO2 and H2O containing air at 850C as well as 1350C for longer duration (>500 h).
- Development of mechanistic understanding of cathode performance degradation
- ✓ DFT modeling to identify suitable dopants to mitigate surface segregation

- Work performed under US DOE Office of Fossil Energy contract DE FE – 0009682
- Drs. Joe Stoffa, Rin Burke, Briggs White and Shailesh Vora for guidance and technical discussion
- Dr. Jeff Stevenson for technical discussion
- Mr. Rich Goettler for technical discussion

Thank you

Electrical Performance

CONN.EDU

The performance remains almost stable after initial activation

