“esh 2R gngineering 575

Understanding the effect of contaminants
on LSCF cathode performance

Project Number: FC FEO009652
DOE Project Manager: Joseph Stoffa

Presenter: M. Liu
Co-authors: D. Ding, S. Lai, X. Li, and F. Alamgir

School of Materials Science and Engineering
Center for Innovative Fuel Cell and Battery Technologies
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

Presented to
15t SECA Workshop
July 23, 2014

DOE-NETL SECA-CTP oo

* Project Information
— Motivation
— Goals and objectives
— Technical Approaches

= Accomplishments to date

— Characterized electrochemical behavior of LSCF cathodes
exposed to H20, CO2 and Cr under ROC;

— Probed surface species of LSCF using in operando SERS

— Characterized local atomistic and electronic structures of
active ions by in operando synchrotron-based X-ray analysis

— ldentified efficient catalysts for enhancing ORR activity and
durability

= Summary
= Acknowledgement
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= Cathode durability is critical to long-term reliable SOFC
performance for commercial deployment.

= Current state-of-the-art SOFC cathode materials are
susceptible to degradation due to contaminants under
realistic operating conditions (ROC).

= Mitigating the stability issues by design of new
materials or electrode structures will reduce the cost of
SOFCs and help to meet DOE cost and
performance goals.
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Project Objectives

e To characterize the electrochemical behavior of LSCF exposed
to contaminants under realistic operating conditions (ROC);

e To probe the surface species/phases of LSCF cathodes
exposed to contaminants under ROC using in situ and ex situ
measurements performed on specially-designed cathodes;

e Tounravel the degradation mechanism of LSCF cathodes by
correlating the changes in performance with the surface
chemistry, microstructure, and morphology under ROC;

e To establish scientific basis for rational design of new
catalysts of high tolerance to contaminants;

e To validate the long term stability of modified LSCF
cathodes in commercially available cells under ROC.
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Surface modification

* Develop catalysts of high activity and durability

* Infiltrate catalysts into porous cathode backbones to
mitigate the effect of contaminants

Catalysts Solution Surface Modified Cathode
Infiltration

Catalyst coating Porous Backbone
AR

Accomplishments to Date

“*Typical electrochemical behavior of porous
and dense thin-film LSCF cathodes exposed
to H,0, CO, and Cr under ROC,;
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Typical Effect of H20/CO2 on LSCF Cathodes

L
i °> 10 9
10 e o—
Ot S 8
(14 - 4 < 6- /
© = /
61 S /
2 2,
o g / o
g M ~9o 600C | @ 2 600°C
P ° @ / —— 750°C
[
2 4 6 8 10 12 14 16 1 2 3 456 7 8 91011
Water Vapor concentration in air, % CO, concentration in air, %

* The degradation effect of H,O and CO, is relatively small (when alone).

* The degradation effect is more pronounced at lower temperatures.

* As the concentrations of H,0 and CO, increase, the effect reaches a saturation,
independent of temperatures.
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Reversibility of H20 Effect on LSCF performance
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Polarization Behavior of porous LSCF cathode

in contact with Cr w/o H.,O
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Accomplishments to Date
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“*Typical surface species/phases on LSCF
cathodes exposed to contaminants as probed
by in operando SERS;

Understanding the effect of contaminants on LSCF: FE0009652




/n Situ/Operando Raman Spectroscopy

Raman Spectrometer

e Environmental
chamber allows the

control of
) atmosphere,
Electrical
. temperature, &
Bias . .
electrical bias.
gas —— (& 5 — * Raman spectroscopy
- ) is sensitive to
Cooling Heating  surface species
water and incipient

phases under in
operando conditions.
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SERS with Ag Nanoparticles (NPs)

o 80nm thick GDC thin film o Intensity variation: 3%
o Enhancement factor of F,, o Reliable for semi-

mode is about 50
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In situ SERS with Ag@SiO2 Particles

TEM images showing core-shell nanoparticles.

Size of the silver NPs: 50n Thices f he SiO2: 5nm

Au/Ag SERS
patterns
with robust
coating

Electrode

SEM images . High temperéture treatment did not
change the shape and distribution.
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In situ SERS for Identification of
Surface Functional Groups

«Developed thermally robust &
chemically inert Ag@SiO, core-shell
nanoparticles for in situ SERS at 450C.
« Detected incipient stage carbon
deposition on nickel.

« Detected surface defects on CeO2
powders.

In-situ SERS with core-
shell nano probes
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Detection of unexpected Cr poisoning
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Accomplishments to Date

“»Local atomistic and electronic structures of
active ions (sites) as characterized sing
in operando X-ray analyses;
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Operando XAS for SOFCs
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In situ CO, exposure, 400°C
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% Exposure to CO, causes oxidation

% Cathodic bias causes CO, to oxide more severely
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» Edge shift in Fe: 0.29 eV vs. operando: 0.35 eV
» Edge shift in Co: 0.34 eV vs. operando: 0.55 eV
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In Operando XANES/EXAFS at 400°C

Cathode Bias: -1.0V

XANES (a, b) P
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XANES/EXAFS at 700°C

Cathode Bias: -1.0V
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/n situvs. operando

. Cathodic bias facilitates the oxidation Fe and Co in
LSCF by CO, at both low and high temperatures

W Fe, in sity
BB Fe, operando
~0.50 B8 co, insitu
% EA Co, operando
-
S0.40

Edge shift caused by

400°C 700°C
Temperature (°C)
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EIS-XANES Correlation Data

Warm colors: CO, Cool colors: H,O
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Summary: Operando XAS for SOFCs

Trends Proposed Mechanisms:

. At 400°C, Co and Fe tend to be v CO, may form a carbonate
oxidized by CO, and H,O, but bond with Co and Fe, which is
cathodic bias enhances more stable at lower
oxidation by H,0/CO, temperatures

. At700°C, observed effects v Cathodic bias accelerates

: carbonate formation by
caused by H,O and CO2 is less creating more oxygen

significant, suggesting that the vacancies, causing stronger

electrical effect is more oxidation of Co and Fe, and
prominent. more rapid degradation

. Local structure of Co is less
stable than Fe, particularly at
700°C under H,O
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Carbon 1s XPS
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Co and Fe 3p XPS
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Oxyagen 1s XPS
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% CO, bonds to Co through an oxygen vacancy

% Co carbonate forms, extracting Co to the surface

% Carbonate decomposes at high temperature, resulting
in oxide

% Oxide segregation degrades performance
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Summary: Studying Surface Reactions of H20/CO2 with XPS

Trends

> Carbonate formation occurs
adventitiously but decomposes at high
temperature, which presumably results
in oxide formation

> Carbonates can form from cooling down
in an environment of H,O/CO,

> Co cations are absent initially from the
surface but segregate to the surface at
high temperature and irreversibly
remain there

> Oxygen photoemission at high
temperature confirms oxide species on
surface
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Proposed mechanisms:

< Co appears to be more
susceptible to segregation
through carbonate formation
and decomposition

+ Fe is more stable because of
its electron bonding orbital
occupancy

< Surface hydroxide formation
may play a mediating role in
continued segregation of Co

Proposed degradation mechanisms of LSCF with H20, CO2 & Cr
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Accomplishments to Date

“*ldentified efficient catalysts for enhancing ORR
activity and durability .
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Cr Resistance by Surface Coating

* (La, Ca)(Ni,Fe)O; 4 and (La, Ca)NiO, 4 were infiltrated into
the LSCF porous electrode.

* Infiltrated electrodes showed smaller cathode overpotential.

_ BNk LSCF Symmetric cell with porous
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Performance enhancement by a catalyst coating
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Enhanced Contaminant Tolerance of PNM coating

— 0.1 M PNM infiltration into
i —— PAMinfiltrated L SCF porous LSCF cathode
A —— Blank LSCF
[ ah i . .
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= SCro,
g .
5 Observation:
[ .
- * No SrCrQ, in the catalyst
coated sample
* Accelerated experiment
suggested that PNM
200 400 600 800 1000 coating should have
. 1 .
Raman Shift, cm powerful contaminant
tolerance
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Implications

» Adsorbed H,0 and CO, may react with segregated Sr to
form hydroxide and then carbonate. Since carbonate may be
more stable thermodynamically, Sr segregation is
exacerbated in the presence of H,O and CO,.

> Both H,0 and CO, promote the formation of A-site
deficiency which is very likely to accelerate (a) surface
segregation of Sr from LSCF (intrinsic degradation
mechanism) and (b) the increased formation of Cr-
containing surface species (e.g. SrCrO,) (extrinsic
degradation mechanism).

» New catalyst coatings through solution infiltrations are
effective approaches to enhance ORR activity and
durability, effectively mitigating the effect of contaminants.
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