Understanding the effect of contaminants on LSCF cathode performance

Project Number: FC FE0009652
DOE Project Manager: Joseph Stoffa

Presenter: M. Liu
Co-authors: D. Ding, S. Lai, X. Li, and F. Alamgir

School of Materials Science and Engineering
Center for Innovative Fuel Cell and Battery Technologies
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

Presented to
15th SECA Workshop
July 23, 2014

DOE-NETL SECA-CTP

Outline

- Project Information
 - Motivation
 - Goals and objectives
 - Technical Approaches

- Accomplishments to date
 - Characterized electrochemical behavior of LSCF cathodes exposed to H2O, CO2 and Cr under ROC;
 - Probed surface species of LSCF using in operando SERS
 - Characterized local atomistic and electronic structures of active ions by in operando synchrotron-based X-ray analysis
 - Identified efficient catalysts for enhancing ORR activity and durability

- Summary
- Acknowledgement
Motivation

- Cathode durability is critical to long-term reliable SOFC performance for commercial deployment.
- Current state-of-the-art SOFC cathode materials are susceptible to degradation due to contaminants under realistic operating conditions (ROC).
- Mitigating the stability issues by design of new materials or electrode structures will reduce the cost of SOFCs and help to meet DOE cost and performance goals.

Project Objectives

- To characterize the electrochemical behavior of LSCF exposed to contaminants under realistic operating conditions (ROC);
- To probe the surface species/phases of LSCF cathodes exposed to contaminants under ROC using in situ and ex situ measurements performed on specially-designed cathodes;
- To unravel the degradation mechanism of LSCF cathodes by correlating the changes in performance with the surface chemistry, microstructure, and morphology under ROC;
- To establish scientific basis for rational design of new catalysts of high tolerance to contaminants;
- To validate the long term stability of modified LSCF cathodes in commercially available cells under ROC.
Surface modification

- Develop catalysts of high activity and durability
- Infiltrate catalysts into porous cathode backbones to mitigate the effect of contaminants

Accomplishments to Date

- Typical electrochemical behavior of porous and dense thin-film LSCF cathodes exposed to H₂O, CO₂ and Cr under ROC;
- Probed and mapped surface species/phases of LSCF cathodes exposed to contaminants using SERS;
- Designed and implemented an in operando SOFC testing assembly capable of probing thin-film LSCF cells using synchrotron-based X-ray techniques.
- Identified efficient catalysts for enhancing ORR activity and durability.
Understanding the effect of contaminants on LSCF Cathodes

Typical Effect of H₂O/CO₂ on LSCF Cathodes

• The degradation effect of H₂O and CO₂ is relatively small (when alone).
• The degradation effect is more pronounced at lower temperatures.
• As the concentrations of H₂O and CO₂ increase, the effect reaches a saturation, independent of temperatures.

Reversibility of H₂O Effect on LSCF performance

• The degradation effect is largely reversible.
• Adsorption seems to be much faster than desorption of water.
Understanding the effect of contaminants on LSCF: FE0009652

Accomplishments to Date

- Characterized electrochemical behavior of porous and dense thin-film LSCF cathodes exposed to H₂O, CO₂ and Cr under ROC;
- Typical surface species/phases on LSCF cathodes exposed to contaminants as probed by in operando SERS;
- Designed and implemented an in operando SOFC testing assembly capable of probing thin-film LSCF cells using synchrotron-based X-ray techniques.
- Identified efficient catalysts for enhancing ORR activity and durability.
In Situ/Operando Raman Spectroscopy

- Environmental chamber allows the control of atmosphere, temperature, & electrical bias.
- Raman spectroscopy is sensitive to surface species and incipient phases under in operando conditions.

SERS with Ag Nanoparticles (NPs)

- 80nm thick GDC thin film
- Enhancement factor of F$_{2g}$ mode is about 50
- Intensity variation: 3%
- Reliable for semi-quantitative analysis

Intensity variation: 3%

Reliable for semi-quantitative analysis

In Operando SERS of Electrode Surfaces
In situ SERS with Ag@SiO2 Particles

TEM images showing core-shell nanoparticles. Size of the silver NPs: 50nm Thickness of the SiO2: 5nm

SEM images. High temperature treatment did not change the shape and distribution.

SEM as deposited | SEM after 450°C 1hr in 4%H2

In situ SERS for Identification of Surface Functional Groups

• Developed thermally robust & chemically inert Ag@SiO2 core-shell nanoparticles for in situ SERS at 450°C.
• Detected incipient stage carbon deposition on nickel.
• Detected surface defects on CeO2 powders.

In-situ SERS with core-shell nano probes

Detection of Coking on nickel surface

Detection of Surface defects on CeO2 powders

SERS probes showed thermal integrity, after heat treatment.
SERS: Surface Degradation of LSCF Cathode

- SERS enabled detection of trace amount of Cr poisoning on LSCF surface.
- Confirmed that higher water concentration induced higher level of SrCrO$_4$ signal.

Study of Cr poisoning with respect to H$_2$O concentration

SERS Analysis of Cr Poisoned Samples (Direct Contact)

- Cr$_2$O$_3$ and SrCrO$_4$ observed on poisoned porous LSCF surface.
- Increasing the H$_2$O concentration makes the Cr poisoning more severe.
Accomplishments to Date

- Characterized electrochemical behavior of porous and dense thin-film LSCF cathodes exposed to H₂O, CO₂ and Cr under ROC;
- Probed and mapped surface species/phases of LSCF cathodes exposed to contaminants using SERS;
- Local atomistic and electronic structures of active ions (sites) as characterized sing in operando X-ray analyses;
- Identified efficient catalysts for enhancing ORR activity and durability.

Operando XAS for SOFCs

- Working electrode: 200 nm thin film LSCF (sputter deposited)
- Electrolyte: single crystal YSZ
- Counter electrode: porous tape-cast LSCF with GDC buffer layer

- Slight glancing angle to limit information depth to surface
- Use glass pipet to inject contaminant gas directly over cell
- Polyimide films used as high temperature, durable x-ray windows and also contain atmosphere
In situ CO₂ exposure, 400 °C

- Exposure to CO₂ causes oxidation
- Cathodic bias causes CO₂ to oxide more severely

Edge shift in Fe: 0.29 eV vs. operando: 0.35 eV
Edge shift in Co: 0.34 eV vs. operando: 0.55 eV

In Operando XANES/EXAFS at 400°C

XANES (a, b)
- Fe + CO₂: oxidized
- Fe + H₂O: oxidized
- Co + CO₂: oxidized
- Co + H₂O: oxidized

EXAFS (c, d)
- Local structures reflect oxidation
XANES/EXAFS at 700°C

XANES (a, b)
- Fe + CO$_2$: oxidized
- Fe + H$_2$O: reduced
- Co + CO$_2$: oxidized
- Co + H$_2$O: no shift

EXAFS (c, d)
- Fe local structure stable
- Co local structure distorts under H$_2$O

In situ vs. operando

- Cathodic bias facilitates the oxidation Fe and Co in LSCF by CO$_2$ at both low and high temperatures
Understanding the effect of contaminants on LSCF & Effective strategies to mitigate their effects

EIS-XANES Correlation Data

- **Warm colors:** CO₂
- **Cool colors:** H₂O

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>400°C</td>
<td>Co and Fe tend to be oxidized by CO₂ and H₂O, but cathodic bias enhances oxidation by H₂O/CO₂</td>
</tr>
<tr>
<td>700°C</td>
<td>Observed effects caused by H₂O and CO₂ is less significant, suggesting that the electrical effect is more prominent.</td>
</tr>
<tr>
<td></td>
<td>Local structure of Co is less stable than Fe, particularly at 700°C under H₂O</td>
</tr>
</tbody>
</table>

Proposed Mechanisms:

- CO₂ may form a carbonate bond with Co and Fe, which is more stable at lower temperatures.
- Cathodic bias accelerates carbonate formation by creating more oxygen vacancies, causing stronger oxidation of Co and Fe, and more rapid degradation.

Summary: Operando XAS for SOFCs

- Increased polarization resistance under CO₂, H₂O
- Higher *Rp* correlates well with **stronger** oxidation

Understanding the effect of contaminants on LSCF & Effective strategies to mitigate their effects
Understanding the effect of contaminants on LSCF & Effective strategies to mitigate their effects

Carbon 1s XPS

- C(1)
 - Adventitious carbon
- C(2)
 - Carbonate
- Surface carbonate
 - 1) Adventitious from synthesis
 - 2) Removed at high temperature
 - 3) Reforms upon cool down in H$_2$O/CO$_2$

Co and Fe 3p XPS

- Fe 3p
 - Typical Fe$^{3+}$
- Co 3p
 - Oxidized shift of Co$^{3+}$
 - 1) As-prepared, no surface Co
 - 2) Surface Co segregated due to carbonates decomposition
 - 3) Reduction from carbonate formation on cool down
Oxygen 1s XPS

- O(1) Surface oxygen
- O(2) Lattice oxygen
 - Carbonate decomposition to oxide state
- O(3) Hydroxide oxygen
 - Oxides converted to carbonates and hydroxides upon cool down

Proposed CO$_2$/CO$_3^{2-}$ mechanism

- CO$_2$ bonds to Co through an oxygen vacancy
- Co carbonate forms, extracting Co to the surface
- Carbonate decomposes at high temperature, resulting in oxide
- Oxide segregation degrades performance

Understanding the effect of contaminants on LSCF & Effective strategies to mitigate their effects
Summary: Studying Surface Reactions of H₂O/CO₂ with XPS

Trends
- Carbonate formation occurs adventitiously but decomposes at high temperature, which presumably results in oxide formation
- Carbonates can form from cooling down in an environment of H₂O/CO₂
- Co cations are absent initially from the surface but segregate to the surface at high temperature and irreversibly remain there
- Oxygen photoemission at high temperature confirms oxide species on surface

Proposed mechanisms:
- Co appears to be more susceptible to segregation through carbonate formation and decomposition
- Fe is more stable because of its electron bonding orbital occupancy
- Surface hydroxide formation may play a mediating role in continued segregation of Co

Proposed degradation mechanisms of LSCF with H₂O, CO₂ & Cr
Accomplishments to Date

- Characterized **electrochemical behavior** of porous and dense thin-film LSCF cathodes exposed to H_2O, CO_2 and Cr under ROC;
- Probed and mapped **surface species/phases** of LSCF cathodes exposed to contaminants using SERS;
- Designed and implemented an in operando SOFC testing assembly capable of probing thin-film LSCF cells using synchrotron-based X-ray techniques.
- Identified efficient catalysts for enhancing ORR activity and durability.

Cr Resistance by Surface Coating

- (La, Ca)(Ni,Fe)O$_3$-d and (La, Ca)NiO$_3$-d were infiltrated into the LSCF porous electrode.
- Infiltrated electrodes showed smaller cathode overpotential.

![Symmetric cell with porous LSCF electrode.](image)

Tested at 750°C, 10% $\text{H}_2\text{O}+1%\text{ CO}_2$ in contact with Cr alloy.
Performance enhancement by a catalyst coating

Performance comparison with a variety of catalyst infiltrations: Initial performance and long term stability enhancement in PNM coating

Significant performance difference between the LSCF and the PNM infiltrated LSCF cathode

Enhanced Contaminant Tolerance of PNM coating

0.1 M PNM infiltration into porous LSCF cathode

In direct contact with Crofer 22 APU coupon exposed to 10% H₂O and 1% CO₂ at 750°C/75 h

Observation:
- No SrCrO₄ in the catalyst coated sample
- Accelerated experiment suggested that PNM coating should have powerful contaminant tolerance
- Adsorbed H\(_2\)O and CO\(_2\) may react with segregated Sr to form hydroxide and then carbonate. Since carbonate may be more stable thermodynamically, Sr segregation is exacerbated in the presence of H\(_2\)O and CO\(_2\).
- Both H\(_2\)O and CO\(_2\) promote the formation of A-site deficiency which is very likely to accelerate (a) surface segregation of Sr from LSCF (intrinsic degradation mechanism) and (b) the increased formation of Cr-containing surface species (e.g. SrCrO\(_4\)) (extrinsic degradation mechanism).
- New catalyst coatings through solution infiltrations are effective approaches to enhance ORR activity and durability, effectively mitigating the effect of contaminants.

Implications

Acknowledgement

Discussions with Joseph Stoffa, Briggs White, and other DOE management team members

DOE-SECA core technology program (Grant No. FE0009652)

Brookhaven National Laboratory

DOE Basic Energy Science Energy Frontier Research Center