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Outline 

● LGFCS Business Activities - 220 kW test 

● Degradation Mechanisms and Mitigation 
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● Primary Interconnect 

● Cell-Stack changes for lower cost  

● Strip Reliability 
● Probability of failure predictions 

● Residual strength of substrates 

● Block Testing Update 
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Phases of the business supported by SECA 

Commercial Phase 

• Facility expansion (all types) 

• Supply-chain expansion 

• Sales / Installation / Service 

capability 

• Product scaling  

• Market expansion 

 

EIS3) Phase 

• Adjustments to key components / 

subsystems from IST results 

• Deploy up to five field test systems 

at “friendly” locations in North 

America 

• Build initial manufacturing facility 

• Active supply-chain management  

• Secure first order for a 

commercially available fuel cell 

power system 

500kW – 1MW Field Tests 

 

SECA supported lower ASR, in-

block reforming and degradation 

improvements 

 

•1) IST : Integrated String Test       2) VOC : Voice of the Customer       3) EIS : Entry Into Service  

IST1) Phase 

• Design, Build and Demonstrate 

a  SOFC power system  from 

fuel in to AC power out (1MW 

Design)    

• Further development of key 

components / subsystems 

• Accelerate EIS activities in 

parallel with development 

• North America Market 

Assessment (VOC Meetings)2) 

~220 kW grid connected test 

 

Cell/stack technology for IST reduced to   

practice under SECA (19 kW testing) 
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LGFCS Integrated String Test Schedule 

 2014 Key Program Milestones Update  
 Fuel Cell Vessel 1 (FCV-1): emulator blocks plus 1 active block for systems commissioning 

 Fuel Cell Vessel 2 (FCV-2): fully loaded with active block for 220 kW  

Apr May Jun Jul Aug Sep Oct Nov Dec Jan‘15 Mar Feb Mar 

•FCV-1 

Build 

•FCV-1 Installation  

•FCV-1 Cold Commission  

•(check point by points) 

•FCV-1 

Installation 

•FCV-1 

Commission 
•Hot Commission 

•IST (FCV-2) 

Demonstration 
•FCV-2 

Installation  

IST Test 

•All Hardware Installed/Connected, Control and 

Safety System Operational, HAZOP / Safety 

Assessments Complete, Commissioning Plan 

Complete, and Commissioning Team Resources 

Identified and Allocated 

•FCV-1 Build 

•Substrate printing •Strip + Block/FCV Assembly 
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Commissioning of IST Subsystems is Progressing 
 Fuel Processor commissioning completed 

 FCV1 turbogenerator assembly under test, controls system completed 

 FCV2 turbogenerator under test 

 Block assembly for FCV1 in progress 

 All substrates printed for FCV2, strip build underway 

 Power electronics installed, grid connected, commissioning starting 

 

 

2013 CAD rendering 2014 System Integration  

Outdoor IST Test Pad 
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Product Durability Strategy 

● End of Life ASR = 0.42 ohm-cm2 to meet 

efficiency requirement 

 

● Assumes constant power over service life 

 

 

 

 

 

 

 

 

● Degradation rate target based on starting 

ASR and required stack life to meet cost 

 

● Lifetime improved by reducing degradation 

mechanisms and/or lowering initial ASR  

Plant Operation Strategy
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Ongoing durability testing at pentacell scale used to 
understand degradation contributions 

● Impedance measured at ~ 1000 hour intervals 

● Resistance, capacitance, and Warburg elements to represent 
behavior 

● Estimates of degradation contributions can then be charted 
over the life of the test 

● Cathodic mechanisms dominate 

 
3

Secondary

Interconnect

Primary

Interconnect

Active Cell

Air Distributor

Bus Rod

Voltage Tap

Lead-outs

Fuel Inlet

Manifold

Fuel Outlet

Manifold

•PCT150 and PCT189: 925C, 4.0 Bara 

800C 925C 
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Cathode Degradation Mechanisms 

● Localized densification near electrolyte interface 

● MnOx segregation and/or migration 

● MnOx valence changes 

● Moisture effect 

● Cr effect 

● Ionic phase degradation 

● Material diffusion  
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Cathode Densification vs. Testing Conditions 

● Kinetics is a key factor for baseline LSM cathode densification 

 

PCT63B 16,000 hrs (860C)

5 µm

PCT63A 8,000 hrs(860C)

PCT89 16,000 hrs (800C)
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MnOx Segregation/Migration Observed Across Temp. Range  

Epsilon 800C 

As-fab                        2,000hrs                      8,000hrs                   16,000hrs 

800C 

6,500 hrs 

860C 

900 - 

925C 
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Minor amount of Mn exsolutes from LSM near interface 

● Data from baseline LSM cathode 

● Tested at 800oC for 16,000 hours under simulated system 

conditions 

TEM image 

Cathode/CCC 

interface 
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MnOx accumulation at interface not observed under OCV  
 

● Tested ~5000 hrs at 925oC and 4 bar 

Reference cell w/o current load 
- MnOx at cathode/CCC interface 

Active cell with current load 
- MnOx at electrolyte 

- MnOx elimination from bulk cathode 

Mn 
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Accelerated Testing of Densification Mechanism  

Footer 

600hrs 2000hrs 400hrs 

● Symmetric button cell tested under 
selected conditions to accelerate 
densification 

● 860C, 16000 hr densification at NOC 
matched in 1200 hours accelerated 
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Long-term cathode material studies ongoing at 
different temperatures 

● Candidate EIS cathodes show benefit at low temperature, similar degradation 
rates at high temperature 

● Still seeking understanding of major degradation mechanisms across 
temperature ranges 

● Densification not a major contributor at low temp. 

● Further documenting the variation of MnOx as function of temp. and LSM cathode 
composition 

•Baseline Cathode 

•Candidates 

•Baseline Cathode 

•Candidates 
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Triple bundle test with candidate cathodes showing 
improved durability trends 

● Only change from baseline cell technology 
was the cathode 

● Rates consistent with cathode degradation 
studies 

● Projects to a 2-½ year life across block 
temp. profile and for block starting ASR  

● Further durability extension with anode and 
interconnect changes 

700

720

740

760

780

800

820

840

860

880

900

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 T

e
m

p
e

ra
tu

re
, 

ºC

A
S

R
, 

o
h

m
-c

m
2

Elapsed Time, hours

Bundle ASR: ATBT3 - Cathode Study Triple Bundle Test

3167-5, Bundle Degradation Rate = 8.5 micro-ohm-cm²/hr

3167-52, Bundle Degradation Rate = 7.1 micro-ohm-cm²/hr

3168-164, Bundle Degradation Rate = 6.5 micro-ohm-cm²/hr

3167-5, Average Temperature = 834.5ºC

3167-52, Average Temperature = 858.3ºC

3168-164, Average Temperature = 882.2ºC

M
ai

n
te

n
an

ce
 S

h
u

td
o

w
n

H
o

t 
St

an
d

-B
y

M
ai

n
te

n
an

ce
 S

h
u

td
o

w
n

Time = 5082 Bundle 1: Bundle 2: Bundle 3:   

  hours 3167-5 3167-52 3168-164   

Average Temperature 834.5 858.3 882.2 ºC 

Bundle Degradation Rate 0.52% 0.43% 0.35% %Power/1000 hrs 

Bundle ASR 0.0085 0.0071 0.0065 ohm-cm²/1000 hr 

1 Bara 



LG data  

Single Layer Anode Selected for EIS Business Phase 
 

925oC 7000hr 925oC 5000hr As reduced 

● Exhibits more uniform microstructure than baseline bi-layer at similar test times 

● Accelerated testing being developed for quicker screening of final anode 
compositions 

H2: 14%, CO:7.5%, H2O: 50%, CO2: 25.5%, N2: 3% 
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Single Layer Anode Showing Improved Durability 

● Lower ASR change and degradation rate after accelerated testing 

● The results were repeated 

TPB was generated from 3D database 
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•Single cell test 

Improved Redox Tolerance is Sought for Anode 
Protection Simplification 

● Tolerate low probability of 

occurrence emergency events  

● Anodes tested 

● Baseline single layer anode  

● Modified 1: composition 

modification 

● Modified 2: microstructure 

optimization 

● Screening tests 

● Pellet test  

● Single cell test 

•Pellet test: 5 redox cycles for different pellets 

Baseline 

Modification 2 

•Redox Cycle: 900C, 3 hrs oxidation, N2 purge 
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Reduce Materials Migration 

● Barrier layer modification does not increase the ASR 
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Via-based 

interconnect design 
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Lower ASR technology demonstrated at bundle-scale  

● ASR reduction at 4 bar of >0.04 ohm-cm2 

● Meets ASR targets for initial products 

● Optimized LSM compositions (lower Rp) 

● Modified primary interconnect design  

● Single layer anode 

● Durability testing at higher current density design point 
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Print pattern changes to optimize power output 

● Smaller primary interconnect dimension has lower ASR contribution 

● Decreased cell pitch gives a lower in-plane resistance 

● Lower ASR combined with increased active area per tube gives a potential 
increase in power output up to 26% 

● Printing trials with 0.95 mm PIC in process 
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Increasing In-Block-Reforming (IBR) to increase 
power density and manage Block ∆T 

● Thermal integration enables operation at higher current density while maintaining 
reasonable stack temperature 

● Higher power density means less stack, smaller package, reduced size of BOP 
components 

● Single turbogenerator serves greater kW 

● May also minimize stack temperature extremes at the hot and cold end which may be 
beneficial for performance and durability considerations. 
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All reforming within bundle Current approach: reforming 
external to bundle 

IBR development activities addressing Thermal 
Stresses and Carbon Avoidance  

● Multi-physics modeling 

 

 

 

 

 

 

 

 

 

 

 

● Bundle test at 50% and 100% IBR performed 
● Nearly full conversion of CH4    

● Lower power at 100% IBR from Nerst potential difference 
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Further Reduction in Cell ASR using Nickelate Cathodes 

● Phase instability under operating conditions has been major issues 

● Technical approaches to improve nickelate phase stability 

● A-site doped Pr2NiO4+d  

 (Pr0.25Nd0.75) A-site ratio is phase stable1, (Pr0.5Nd0.5) exhibits instability 

● Addition of B-site dopants provides phase stability for A-site (Pr0.5Nd0.5)  

Nickelate provides ~0.02 ohm-cm2 lower ASR 

than most favorable LSM-based cathode 

1. Advances in Solid Oxide Fuel Cells III, Ceramic Eng. and Sci. Proc., 28(4) 2008.  
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FEA Validation and CARES Prediction 
● FE Stress Modelling: Validation at RT 

 

 

 

 

 

 

 

 

● CARES Prediction: 4pt bend test at RT 

 

 

MMA Substrate Gen 2  

 

Ratios (Exp./FE) 

Kmax  (N-mm) 

Bare Substrate 
(avg. strength from 30 test) 

1804/1777.6 =1.01 

Glassed Substrate  
(120µm thick glass layer and avg. strength 

from 6 test) 

1831/2102.5 = 0.87 

Full Printed Substrate 
(avg. strength from 15 test) 

2504/2726.5 = 0.92 

•Input from 4pt bend test on MMA 

Substrate : 

•σ0 = 57.48,  m = 16.48 

 

•CARES Output:  

•Pf, CARES prediction = 63% 

 

•Pf, expected = 63.2% (Good Agreement) 
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Very Low Pf of Substrate under Operating conditions 
(Fast fracture) 

● Conservative assumptions of Weibull 

parameters – used RT values under 2 

conditions 

● Tube specification (MoR= 29MPa, 

m=15) 

● Actual Tube MOR  (MoR= 1.31MPa, 

m = 14.98) 

● Bundle thermal boundary conditions 

mapped in ABAQUS. 

● Peak stresses for substrate 2 of top 

bundle in strip 5 (worst case) 

MMA 

Substrate 

(Tube #) 

Max. Stress 

(MPa) 

Pf (%),  

Actual 

Pf (%), Tube 

Specification 

1 6.40 
 

0.86e-11 0.18e-11 

2 15.27 
 

0.51e-8 0.107e-5 

3 9.10 
 

0.13e-10 0.27e-8 

4 7.40 0.10e-9 0.25e-7 

5 5.95 
 

0.95e-11 0.19e-8 

6 7.54 
 

0.16e-9 0.33e-7 



LG data  

Low Pf of Substrate under Normal Operating Conditions 
(Slow fracture) 

● Conservative assumptions of Weibull parameters – used RT 

values under 2 conditions 

● Used actual high temperature SGC parameters from ORNL 

MoR (MPa) m 

Porous 

MMA 

41.31 14.98 

Dense MMA 248.61 9.38 

Future Work:  

● FEA for dense parts+ CARES prediction for a full strip 

● Low risk of failure of dense parts as strength 4X 

substrate and similar SCG parameters and >Kic 

● Block transient stress states 

•SCG test- 900°C+Air  

Pf in 10-4 range for substrate 2 Room Temp. Weibulls 
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Phase 2 Block Test: Post-test Reliability Assessment 

Approach: Measure RT 4-pt and compare to 

bare substrate of identical lot. 

● The ratio of Tested Substrate: As-rec’d Bare 

Substrate is ~1.3-1.5, typical of ratio for as-

processed substrates 

● This indicates little or no loss in strength over the 

nominal 3000 hours of operation.    

 

 

Mechanical Properties 

• Fracture can start from surface defect as well as 

from volume imperfection. 

• All the data (~600) from Strip 1, 3 and 5 put together 

show a good linear fit. 

Strip 

No. Lot No. 

No. of  Test 

Specimens 

Strength Ratio (± 

95% Conf. Int.) 

1 22 186 1.32 ± 0.019 

1 32-2 19 1.32 ± 0.048 

3 32-1 196 1.46 ± 0.014 

5 32-2 36 1.39±0.15 

5 24 132 1.40±0.14 

5 25 33 1.53±0.07 

MoR (MPa) m 

Post-test 46.76 13.43 

(Mix of Gen1 and Gen2 substrates) 
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Block Testing Matching Product Cycle, Components 
and Operating Conditions 

•Turbo-Generator 

Fuel Cell

Cathode

Fuel 

Cell

Anode

OGB

Anode Ejector

Cathode Ejector

Turbo-Generator

RRFCS NG “Dry Cycle” Configuration

Auxiliary

Ejector

R
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M

E

R

R

E
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M

E

R

Auxiliary

Heat Exchanger

Heat Source for Cathode Loop;

Partially-Spent Anode Gas, 

Heated Cathode Loop Air,

and Hot Recycle

De-Sulfurized

NG

•Recuperator 

•Initial design of block testing rigs 

•Representative of cycle and components  

•Not packaged for product 

•One rig converted to match IST block design 

•Allows testing of 3 blocks 

•Fully representative of product 

Derby, UK 
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3 Block Tests Supported by Current Program 

● Two 15 kW tests – original block design 
● Screening of cathode technology 

● 1st test: Chromium mitigation, pipeline nat. gas and SCSO 
desulfurization (started July 2014) 

● 2nd test: higher Chromium sources, pipeline nat. gas 
(starting Aug 2014) 
 Similar Cr content as Phase 1 and Phase 2 block tests  

 

 

 

 

 

 

 

 

● 3rd  4-strip test of combined cell technology for lower 
ASR and improved durability 

● expected <0.75%/1000 hours 

● Single layer anode, alternate cathode, primary interconnect 
redesign  
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Current Phase Block Test #1 

● 4 Strip test with EIS cathode candidates 

 

● 15.4 kW target value achieved 

 

● ASR improved over Phase 2 test, 
especially at lower temp. 

 

● Problems with BOP forced early 
shutdown 

● NG-SCSO connectivity 

● Air compressor failure 
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Conclusion 

● Cell and stack developments supported by SECA are moving into 
220 kW-scale system integration testing 

 

● Degradation rates being reduced, further verification through 
accelerated and longer-term testing across testing platforms 

 

● Active layer materials in final screening for inclusion in next 
business phase of system field testing 

 

● In-block reforming coupled with lower ASR cell technology provides 
significant cost reductions – focus of next Phase.  
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