

SOFC Metallic Interconnect Retrospective A Collaborative Success

Briggs M. White, Ph.D.

Project Manager

Advanced Energy Systems Division

Metallic Interconnect Development Drivers and Challenges

Drivers

- 1. Low cost
- 2. Commercial alloys available in large volumes
- 3. No densification required
 - *vs. Lanthanum Chromite
- 4. Easier to post-process
 - *e.g. stamp

Enabled by anode-support (thin electrolyte & lower temp)

Challenges

- 1. Low-cost material
- 2. Identify commercial alloy
- 3. Dual atmospheres (C, S, H₂, H₂O)
- 4. High temperatures
- 5. Electrically conductive
 Scale & coating
- 6. Low-volatility (chrome)
- 7. Adherent scale
 Thermal cycles
 Several year service life

State Of The Art at SECA Start

Approaches Identified

Materials Breakout Notes - Session A

- 1. Investigation of commercially available alloys
- 2. Cathode side surface treatments on commercially available metallic interconnect
- 3. Investigation of developmental alloys
- 4. Interconnect designs that minimize material use
- 5. Investigation of the interconnect and electrode interface

<u>Materials Breakout Notes – Session B</u>

- 1. Examine interface and coatings interrelations and stability
- 2. Examine stability and electric transport at interface
- 3. Conduct surface modification studies

Commercial Alloy Selection

Key Elements

Initial Approaches:

- Ni-based superalloys (Haynes)
- Hi-chrome alloys (E-Brite)
- 400-series steels

Austenitic

441 Stainless Steel Mufflers & Fuel Cells - An Amazing Coincidence

Key 441 Features

Economical, mass produced

Expansion matched

Laves phases

Chromia former

Maintains conductive scale

Dual-atmosphere stability

Timeline Workshops, Development, Tech Transfer

2000: Pre-screening of alloys

2001: Down-selection to ferritic

stainless steels

2002: Screening of alloy properties

2003: Evaluation of protective

coatings

2004: Identify spinel coatings

2007: Initial studies on 441

2008: Ce coatings and Ce-modified

MnCo spinel coatings

2010: Physical modifications to steel

surface

2013: 6,000h validation of surface-

modifed, spinel-coated 441 in

stack test fixture

2000: SECA Workshop

Breakout Sessions

2001: SECA Workshop

Materials Roadmapping

2004: Interconnect

Workshop at ANL

2006: Industry-National

Lab Cr poisoning study

2008: ATI 441 order –

National Labs & Industry

Teams

2008: Topical Report on

441 & coatings

transferred to Industry

Teams

2010-2013: 2 patents, 2

R&D 100 awards

Coating Development Progress

Manganese-Cobalt Spinel Coating Coating Performance Verified

Transmission Electron
Microscopy (TEM) analysis
shows unique steel-coating
synergy

Low stable Area-Specific Resistance (ASR) for >2 years at 800C

Chemical & Physical Modifications Options for enhanced reliability and lifetime

2 Rare Earth Treatments

Ceria surface coating (alone or in combination with coating)

Integrate RE within coating

Physical Surface Modifications

Multiple approaches improve upon asreceived steel.

- Extends lifetime by delaying scale spallation
- Standard commercial processes

More Adherent Scales Tested 18,000 hours at 800 °C in air

R&D Over The Years Numerous Successes

- 2011: Mn-Co Coating for Solid Oxide Fuel Cell Interconnects, Chris Johnson, Randy Gemmen, and Xingbo Liu (WVU)
- 2010: Cerium Oxide Coating for Oxidation Rate Reduction in Stainless Steels and Nickel Superalloys, Paul Jablonski and Dave Alman

- 1. E.V. Stephens, X. Sun, W. Liu, J.W. Stevenson, W. Surdoval, and M.A. Khaleel, "Surface Modification to Prevent Oxide Scale Spallation," U.S. Patent 8,486,582 (2013).
- 2. Z.G. Yang, J.W. Stevenson, and G.G. Xia, "Approach for Improved Stability and Performance of SOFC Metallic Interconnects," U.S. Patent 8,241,817 (2012).

State Of The Art Final Thoughts

Low-cost stainless steel interconnects (and flow fields) are viable for anode-supported planar SOFCs

- Substantial progress in alloy identification, coating development, processing development, and verification
- Commercial offerings now available:
 - Steel: 441, Crofer H, Sandvik
 - Coatings: MCO, Co, aerosol spray, electroplating, pre-coated
 - Surface treatments: shot-peening, rare-earths

Strong collective effort within SECA (complemented world-wide)

- Many groups involved
- Thank you for the hard work

Acknowledgements Thank You

- Nguyen Minh U Cal. San Diego (formerly GE)
- Steve Visco LBNL
- Michael Krumpelt ANL
- Randy Gemmen & Paul Jablonski NETL
- Jeff Stevenson PNNL
- Jeffrey Fergus Auburn
- Prabhakar Singh UCONN (formerly PNNL, Siemens)
- Eric Tang & Brian Borglum VPS/FCE
- Subhasish Mukerjee Ceres Power (formerly Delphi)
- Results, images, figures courtesy of Pacific Northwest National Laboratory, National Energy Technology Laboratory, Auburn University, and NexTech Materials Ltd.

