Novel Inorganic/Polymer Composite Membranes for CO₂ Capture DE-FE0007632

PI: Winston Ho, Professor

Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering

Co-PI: Prabir Dutta, Professor

Department of Chemistry The Ohio State University

Steve Schmit, Director of R&D

Gradient Technology

Project Objective

 Develop a cost-effective design and manufacturing process for new membrane modules that capture CO₂ from flue gas

BP1

- Bench scale membrane synthesis, characterization, downselection, and gas separation performance
- Preliminary techno-economic analysis

• BP2

- Bench scale membrane synthesis, characterization and gas separation performance to continue
- Continuous membrane fabrication
- Membrane module testing in lab (CO₂, N₂, MOISTURE)
- Update techno-economic analysis

BP3

- 3 prototype modules for testing with simulated flue gas
- Update techno-economic analysis
- EH&S evaluation report will be developed

Project Organization and Roles

Funding and Performance Dates

Total Budget: 10/01/2011 – 08/31/2015
 DOE: \$3,000K; OSU: \$679K; ODOD: \$500K

• BP1: 10/01/2011 – 05/31/2013 DOE: \$899K; OSU: \$351K

• BP2: 06/01/2013 – 08/31/2014 DOE: \$958K; OSU: \$131K; ODOD: \$277K

• BP3: 09/01/2014 – 08/31/2015 DOE: \$1,144K; OSU: \$197K; ODOD: \$223K

Process Proposed for CO₂ Capture from Flue Gas in Coal-Fired Power Plants

Approach 1: Selective Amine Polymer Layer / Zeolite Nanoparticle Layer / Polymer Support

High Inorganic Performance and Low-Cost Polymer Processing Benefits

Approach 1: Selective Amine Polymer Layer / Zeolite Nanoparticle Layer / Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO₂ via reaction with amine

$$CO_2 + R-NH_2 + H_2O \Longrightarrow R-NH_3^+ + HCO_3^-$$

- High CO₂ permeance and CO₂/N₂ selectivity

- Zeolite Nanoparticle Layer
 - Increased porosity
 - Reduced pore size -> Thinner selective amine layer
 - Higher CO₂ permeance

Approach 2: Polymer Caulking Layer / Selective Zeolite Membrane / Polymer Support

High Inorganic Performance and Low-Cost Polymer Processing Benefits

Need rapid growth process for zeolite membrane to be cost competitive

Approach 2: Transport Mechanism through Zeolite

Rapid Synthetic Process for Zeolite Powders

Growth Process takes 1 hour compared to 8 hours with conventional method

Rapid Synthetic Approach Adapted to Zeolite Membrane

- Membrane synthesis process takes 1 hour
- Transport studies in progress

BP1 Accomplishments

- Approach 1: Zeolite/Amine Polymer Composite Membranes Synthesized and Showed:
 - 1100 GPU with ~800 CO₂/N₂ selectivity at 102°C
 - 690 GPU with 123 CO₂/N₂ selectivity at 57°C
 - Zeolite/polymer element hand rolled successfully (6" x 6" membrane leaf)
- Approach 2: Significant Membrane Synthesis Improvements
 - Discovery of rapid zeolite particle synthesis (< 1 hr vs. 8 hrs)
- Preliminary Techno-economic Calculations
 - Techno-economic model developed
 - 690 GPU with ~123 selectivity at 57°C (based on 2007\$)
 - ~\$43/tonne CO₂

BP2 Accomplishments

- Approach 1: Zeolite/Amine Polymer Composite Membranes Prepared in Lab Showed:
 - 1100 GPU with ~140 CO₂/N₂ selectivity at 57°C
 - 1460 GPU with >1000 CO₂/N₂ selectivity at 102°C
 - Patent application filed
- Approach 1: Composite Membrane Scaled up to Prototype Size
 - Membrane scaled up to 14" wide using continuous membrane rolling machine
 - 844 GPU with ~140 CO₂/N₂ selectivity obtained at 57°C
 - Developed affordable nanoporous polymer support (PES)
 - 1.8" (1.5" OD central tube) by 14" long spiral-wound membrane elements fabricated using rolling machine

BP2 Accomplishments (continued)

- Preliminary Techno-economic Calculations showed
 - 1100 GPU with ~140 selectivity at 57°C (based on 2007\$)
 - \$37.5/tonne CO₂ Exceed DOE target of \$40/tonne CO₂
 - 52.2% COE increase
- Approach 2: Rapid Zeolite Membrane Growth (1 hour)
 - Patent application filed
 - Published in *Langmuir*, 2014, 30, 6929-6937
- Effects of SO₂ and CO₂/SO₂ Mixture on Amine Carriers being Studied by in-situ FTIR
 - SO₂ permeated with CO₂
 - Membrane performed well

Approach 1: Zeolite Nanoparticles Deposited on Polymer Support Successfully

High quality deposition with good repeatability

Amine/Zeolite Seed Layer/Polymer Support

Approach 1: Zeolite/Polymer Composite Membranes Containing Amine Cover Layer at 57°C

Approach 1: Lab-size Zeolite/Polymer Composite Membranes Containing Amine Cover Layer at 102°C

Membrane Scale-up: Usable for Approaches 1 and 2

Continuous Membrane Fabrication Machine at OSU

Successful Continuous Fabrication of Affordable PES Support (applicable to Approaches 1 and 2)

Casting Machine

14-inch PES Support

SEM – Top View

- Manufacturer could not supply PES needed for scale-up
- PES synthesized/developed at OSU to resolve supply issue
- Technology transfer to TriSep

Approach 1: Scale-up Zeolite-Y Deposition and Amine Coating

14-inch PES Support

14" ZY Deposition on PES Support

14" Amine Coating on ZY Layer on PES

Approach 1: Membrane Element Fabrication

Spiral-Wound Membrane Element

Element Rolling Machine

Membrane Module

Feed

Outlet

Techno-economic Calculations (applicable to Approaches 1 and 2)

Performed by Gradient Technology (based on 2007\$)

- Scaled-up Prototype Results: 844 GPU & 138 Selectivity at 57°C
 - \$40.7/tonne CO₂ Nearly meet DOE target of \$40/tonne CO₂
 - 57.7% Increase in cost of electricity (COE)
- Lab Results: 1100 GPU & 140 Selectivity at 57°C
 - \$37.5/tonne CO₂ Exceed DOE target of \$40/tonne CO₂
 - 52.2% Increase in COE
- Lab Results: 1460 GPU & >1000 Selectivity at 102°C
 - \$35.5/tonne CO₂ Exceed DOE target of \$40/tonne CO₂
 - 48.7% Increase in COE
- If:
 - CO₂ Permeance = 3000 GPU & 140 CO₂/N₂ Selectivity
 - \$30.9/tonne CO₂ Exceed DOE target of \$40/tonne CO₂
 - 44% COE increase
- Significantly Lower Cost than Amine Scrubbing

Approach 1: SO₂ Membrane Mitigation

- Absorption into 20 wt% NaOH Solution
 - Polishing step based on NETL baseline document
 - Estimated to be about \$4.3/tonne CO₂ (6.5% COE increase)
 - Non-plugging, low-differential-pressure, spray baffle scrubber
 - High efficiencies (>95%)

24

Plans for Future Testing/Development

• **BP3**

- 3 prototype modules (each 2 m²) for testing with simulated flue gas
- Update and finalize techno-economic analysis
- EH&S evaluation with Gradient Technology and AEP

BP3 Detailed Tasks

BP3 Detailed Tasks

Task Name	Start	Finish
Task 17: Project Management and Planning	9/1/2014	8/31/2015
Task 18: Further Improved Membrane Synthesis	9/1/2014	8/31/2015
Approach 2: Optimization of rapid zeolite membrane growth	9/1/2014	8/31/2015
Task 19: Membrane Characterization - SO ₂ Mitigation	10/1/2014	8/31/2015
Task 20: Optimized Prototype Membrane Fabrication	10/1/2014	8/31/2015
Task 21: Optimal Prototype Membrane Characterization	11/1/2014	8/31/2015
Task 22: Prototype Module Fabrication	11/1/2014	5/31/2015
Task 23: Membrane Module Testing	9/1/2014	8/31/2015
Task 24: Use and Refining of the System and Cost Analysis	9/1/2014	8/31/2015
Task 25: Quarterly Progress Reports	11/1/2014	10/1/2015
Task 26: Final Technical Report	6/1/2015	12/1/2015