BENCH-SCALE PROCESS FOR LOW-COST CARBON DIOXIDE (CO₂) CAPTURE USING A PHASE-CHANGING ABSORBENT

DE-FE0013687

Tiffany Westendorf

GE Global Research

2014 NETL CO₂ Capture Technology Meeting July 30, 2014

Chemistry of GAP-0 reaction with CO₂

- Extensive screening of multiple solvents
- Absorbs CO₂ very rapidly in the 40-50°C range
- High CO₂ loading (>17% weight gain, >95% of theoretical value)
- Carbamate readily decarboxylates at higher temps
- Carbamate is solid \rightarrow new process configuration

GAP-0 Properties

- Lower vapor pressure vs. MEA
- Higher heat of reaction vs. MEA
- Lower heat capacity vs. MEA
- >11% Dynamic CO₂ capacity @ 6 bara

Effect of Water on Carbamate Salt

Impact of dry vs wet CO₂

Solvent	Dry % Wt Gain (% of Theoretical)	Dry Salt Form	Wet % Wt Gain (% of Theoretical)	Wet Salt Form
GAP-0	17.3 (98)	Powder	18.4 (104)	Powder
GAP-1	13.1 (96)	Powder	14.1 (103)	Sticky Wax
M'D'M'	17.8 (99)	Powder	16.6 (92)	Glass
M' ₃ T'	18.8 (103)	Powder	17.4 (96)	Sticky Gum
Me Me ^{-Si} , O _{Si} , Me Me ^{-Si} , Me	17.3 (92)	Powder	20.7 (109)	Powder

• Pure compounds GAP-0 & cyclic diamine looked best

Oligomer-based salts softened with H₂O & became sticky

Thermal Stability

Continuous System

Solid Formation and Isolation

Cyclone Separator

- Spray reactor with co-current CO₂ flow
- Nearly instantaneous solid formation
- 50-400 g sample size imagination at work

GE GRC Spray Reactor

- Mean particles $< 50 \mu m$
- Highly crystalline

Phase-Change Continuous System

- System built for ARPA-e project
- 2 months of data gathering
- Demonstrated continuous operation of key process steps

Phase-Changing Aminosilicone CO₂ Capture

<u>Advantages</u>

- •Non-aqueous, pure solvent
- •Superior properties to MEA:
 - •Lower heat capacity
 - •Low corrosivity
 - •Higher thermal stability
 - •Higher vapor pressure
- •Supports pressurized CO₂ desorption
- Intensified mass transfer, smaller footprint

Challenges

- Solvent cost, availability
- Pressurized solids handling
- Management of reaction heat in absorber
- Chemical deactivation of solvent
- Scaleup of extruder

BENCH-SCALE PROCESS FOR CO₂ CAPTURE USING A PHASE-CHANGING ABSORBENT

36 Month, \$3.0MM Program to Develop a Phase-Change Process for CO₂ Capture

Program Objective: Design and optimize a new process for a novel silicone CO₂ capture solvent and establish scalability and potential for commercialization of post-combustion capture of CO₂ from coal-fired power plants. A primary outcome will be a system capable of 90% capture efficiency with less than \$40/tonne CO₂ capture cost.

lass Flov Gas Exhaust Gas Mass Flow Controller Stripped Flue Gas Analysis P Flue Gas LeanLiquid GAP-0 Lean Liquid GAP-0 Spray Absorbe Cyclone Back Pressure Regulator Solids Feeder Mass Flow Mass Flow Meter Low Pressure Liquid High-Pressure Desorber Ćhiller Throttling Leon Liquid Lean Liquid Low-Pressure Desorber

\$2.4M DOE share 1/1/2014 – 12/31/2016

Program Deliverables

Strategy for future

90% CO₂ capture
\$40/tonne CO₂ capture cost

Program Team

GE Global Research Niskayuna

- Bench-Scale Design
- Construction/operation of Continuous System
- EH & S Assessment
- Techno-Economic Assessment

Confidence through partnership • Extruder Design • Component Integration • Heat Management Geless

Solvent Manufacturers • Aminosilicone Supply

Technical Approach

- Design and construct bench-scale unit and obtain parametric data to determine key scale-up parameters
- Perform an EH & S and technical and economic assessment to determine feasibility of commercial scale operation
- Develop scale-up strategy

Project Structure

- Budget Period 1: Design and Build [2014]
 - Spray absorber, extruder, desorber
 - Preliminary Technical and Economic Assessment
 - <u>Go/No-go:</u> 90% CO₂ Capture, < 50/tonne CO₂
- Budget Period 2: Unit Operations Testing [2015]
 - Optimize individual unit operations separately
 - Solvent manufacturability study and EH&S risk assessment
 - Update Technical and Economic Assessment
 - <u>Go/No-go:</u> 90% CO₂ Capture, < 45/tonne CO₂
- Budget Period 3: Continuous System Operation [2016]
 - Integrate unit ops into continuous system, generate engineering data for scaleup
 - Final Technical and Economic Assessment
 - Goal: 90% CO₂ Capture, <\$40/tonne CO₂

Budget Period 1

- Design and construction of bench-scale unit
 - Spray reactor
 - efficient spray formation and contact with simulated flue gas
 - low fouling nozzle
 - disengagement of particles from gas stream
 - operation at 200 mL/min solvent flow rate
 - 120 slm gas flow rate
 - solids transfer device (rotary valve)
 - Extruder
 - system to handle 20-150 lb/hr solid
 - maintain dynamic seal
 - design elements to optimize seal
 - consult with Coperion as needed

Budget Period 1

- Design and construction of bench-scale unit
 - Desorber
 - 2 vessels in series
 - elevated pressure to maintain extruder backpressure
 - atmospheric vessel for polishing
 - Integrated system
 - work closely with Facilities for installation
 - process controls/instrumentation
 - automated controls where possible
 - data logging capability
- Preliminary Technical & Economic Assessment
 - Leverage model developed in ARPA-e project
 - Estimate cost of CO₂ capture

Success Criteria

- Budget Period 1: Design and Build [2014]
 - Unit operations are built and operational
 - 90% CO₂ Capture, <\$50/tonne CO₂
- Budget Period 2: Unit Operations Testing [2015]
 - >90% GAP-0 conversion in absorber, reactor T < 90°C
 - <5% solids lost from absorber solids collection
 - >90% of carbamate conversion dictated by isotherms at T, P in pressurized desorber
 - >95% of carbamate conversion in atmospheric desorber
 - 90% CO_2 Capture, <\$45/tonne CO_2
- Budget Period 3: Continuous System Operation [2016]
 - <0.3%/day thermal degradation of solvent
 - >20% improvement in energy penalty vs. MEA
 - 90% CO₂ Capture, <\$40/tonne CO₂

Risk Assessment

Status / Next Steps

<u>Status</u>

- •Design and build
 - •Conceptual design and initial P&IDs
 - Secured key process equipment
 - •New equipment orders in progress
 - Kickoff with Facilities for installation
 - Negotiated lower price for solvent
- Process and economic modeling
 - Prioritized task plan for process modeling established
 - •Synergies with pilot scale solvent project
 - power plant modeling/integration

Next Steps

- Design and build
 - Complete equipment installation
 - Equipment commissioning
 - Experimental plan for unit ops testing / BP2
- Process and economic modeling

Phase-Changing Aminosilicone: Beyond 2016

Flexible, unique capture process may be advantageous in diverse applications:

- Remote settings
- Process transients (startup, excursions/upset)
- Variable load

Thank You

- NETL
 - David Lang
- GE GRC Project Team
 - Mike Bowman, Wei Chen, Rachel Farnum, Mark Giammattei, Terri Grocela-Rocha, Robert Perry, Surinder Singh, Irina Spiry, Paul Wilson, Benjamin Wood
- Coperion
 - Paul Andersen, Eberhard Dieterich

Acknowledgement. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000084 and DOE- NETL under Award Number DE-NT0005310.

Disclaimer. The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

