

July 29, 2014

Advanced Solid Sorbents and Process Designs for Post-Combustion CO₂ Capture (DE-FE0007707)

RTI International

Luke Coleman, Justin Farmer, Atish Kataria, Marty Lail, <u>Thomas Nelson</u>, Mustapha Soukri, Jak Tanthana

Pennsylvania State University

Chunshan Song, Dongxiang Wang, Xiaoxing Wang

RTI International is a trade name of Research Triangle Institute.

Copyright © 2014 RTI. All rights reserved.

Project Overview

Objective

Address the technical hurdles to developing a solid sorbent-based CO_2 capture process by transitioning a promising sorbent chemistry to a low-cost sorbent suitable for use in a fluidized-bed process

٠

Specific Project Goals

This project combines previous technology development efforts: RTI (process) and PSU (sorbent)

Project Funding: \$3,847,161

- DOE Share: \$2,997,038
- Cost Share: \$850,123

Period of Performance:

• 10/1/2011 to 6/30/2015

Project management **Process design** INTERNATIONAL

•

- Fluidized-bed sorbent

- PSU's EMS Energy Inst. •
 - PEI and sorbent improvement

- Masdar New Ventures
- Masdar Institute

Improve stability, performance, and fluidizability of novel

Improve design of fluidized, moving-bed reactor;

• Prove that the technology reduces parasitic energy load

and capital and operating costs associated with CO_2

amine-based (PEI) "Molecular Basket Sorbents"

capture (prototype testing & economic analyses)

optimize operability and heat integration

Techno-economic evaluation of NGCC application

Technology Background

Sorbent Chemistry

• Polyethyleneimine (PEI)

Primary: Secondary: Tertiary: $CO_{2} + 2RNH_{2} \rightleftharpoons NH_{4}^{+} + R_{2}NCOO^{-}$ $CO_{2} + 2R_{2}NH \rightleftharpoons R_{2}NH_{2}^{+} + R_{2}NCOO^{-}$ $CO_{2} + 2R_{3}N \rightleftharpoons R_{4}N^{+} + R_{2}NCOO^{-}$ $H_{2}O$

Advantages

- Reduced energy consumption
- Reduced capital cost
- Avoids evaporative emissions
- Density of CO₂ absorbing sites

Challenges

- Heat management
- Solids handling & control
- Physically strong sorbent
- Stability/leaching of PEI

Technical Approach & Scope

Start w/ process engineering analysis

 Concluded that circulating, staged, fluidized-bed design exhibits significant promise.

Development Needs:

• Optimize reactor design and process arrangement.

Development Approach:

- Detailed fluidized bed reactor modeling.
- Bench-scale evaluation of reactors designs.
- Demonstration of process concept.

Start w/ preliminary economic screening

Start w/ promising sorbent chemistry

 PSU's Molecular Basket Sorbents offer high CO₂ loading; reasonable heat of absorption (66 kJ/mol).

Development Needs:

- Improve thermal stability.
- Reduce leaching potential.
- Reduce production cost.
- Convert to fluidizable form.

Development Approach:

- Modify support selection.
- Simplify amine tethering.
- Scalable production methods.
- Conducted detailed technical and economic evaluations
- Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants
- **Result:** Total cost of CO₂ captured estimated to be 39.7 \$/T-CO₂ (SOTA Amine Process ~68\$/T-CO2)
- Further reduction needed \rightarrow reduced power consumption & capital cost

Technical Approach & Scope

Previous Work	Current Project		Future Development			
< 2011	2011-15		2015 - 17	2018-22	> 2022	
Proof-of-Concept / Feasibility			Pilot 1 - 5 MW (eq)	Demo ~ 50 MW	Commercial	
Laboratory Validation (Long-Term Performance (2014 – 2015)					
 Economic analysis Milestone: Favorable technology feasibility study Sorbent development Milestone: Improved sorbent stability and production Process development Milestone: Working multi-physics, CFD model of FMBR Milestone: Fabrication-ready design and schedule for bench-scale prototype 		 Process Development Milestone: Fully operational bench-scale with process testing conditions optimized Milestone: Completion of 1,000 hours of parametric and long-term testing Updated Economics Milestone: Favorable technical, economic, environmental study (meets DOE targets) 				
Prototype Build & Testing (2013 - 2014)						

Field Testing of Prototype Unit

- Milestone: Operational bench-scale prototype capable of 90% CO₂ capture
- *Milestone:* Successful scale-up of Gen1 sorbent with confirmation of maintained properties and performance compared to lab-scale production

- Test Equipment
- Process Development Progress
- Bench-scale System Design and Build
- Sorbent Development Progress
- Sorbent Scale-up
- Next Steps

RTI International

Test Equipment – PBR and vFBR

Packed-bed Reactor

- Fully-automated operation and data analysis; multi-cycle absorption-regeneration
- Rapid sorbent screening experiments
- Measure dynamic CO₂ loading & rate
- Test long-term effect of contaminants

"visual" Fluidized-bed Reactor

- Verify (visually) the fluidizability of PEIsupported CO₂ capture sorbents
- Operate with realistic process conditions
- Measure $\triangle P$ and temperature gradients
- Test optimal fluidization conditions

Process Development Progress

Objective

Design, build, and test a bench-scale system to evaluate optimal fluidized-bed reactor design and demonstrate long-term performance stability of PEI-based CO_2 sorbents.

Previous Work

- *Process design screening:* initial process design screening, heat transfer tests, and engineering evaluation, concluding that fluidized moving-bed design exhibits significant promise.
- Fluidized-bed reactor model: developed a FB reactor model to simulate the performance of conceptual fluidized-bed reactor configurations.
- Bench-scale system design: developed a detailed engineering design package of a bench-scale contactor evaluation unit (BsCEU). Designed to evaluate effectiveness of proposed reactor designs for CO₂ removal from flue gas.

Test Site & BsCEU Design

Energy Technology Development Facility

- ETDF is dedicated to hosting bench- and pilot-scale systems
- 60' x 50' x 45' tall enclosed structure
- ETDF is equipped with:
 - Simulated flue gas generation
 - closed-circuit chilled water loop
 - steam generator
 - air compressor
 - electrical supply for multiple systems

- BsCEU specifications:
 - Flue gas throughput: 300 and 900 SLPM
 - Solids circulation rate: 75 to 450 kg/h
 - Sorbent inventory: ~75 kg of sorbent

RTI International

BsCEU Testing Status

- Pressure & leak testing in parallel with mechanical completion
- Electrical completion and testing
- Field verification of system instrumentation and the data acquisition and control system
 - Cold and hot gas flow verification
 - Heated gas flow, differential pressure validation
 - Verification of gas composition control
 - Fluidization characterization with "commissioning material"
 - Demonstration of stable/controllable solids flow and circulation between Absorber and Regenerator
 - Calibration of valves and other control mechanisms
 - Verification of cooling/heating within Absorber and Regenerator
- System operation and testing with CO₂ sorbent
 - Cold flow demonstration of stable and controllable flow of sorbent and circulation between stages and columns
 - CO₂ capture experiments
 - Demonstrate ability to achieve 90% CO₂ capture
 - Demonstrate effective heat management in Absorber/Regenerator

Sorbent Development Progress

Objective

Improve the thermal and performance stability and production cost of PEI-based sorbents while transitioning fixed-bed MBS materials into a fluidizable form.

Previous Work

- Stability improvements through addition of moisture reducing formation of urea.
- Stability improvements through PEI / support modifications.
- Suitable low-cost, commercial supports identified (1000x cost reduction).
- Converted sorbent to a fluidizable, strong particle.

Current Work

GenI Sorbent (chosen for scale-up)

- PEI on a fluidizable, commercially-produced silica support.
- Optimized Gen I sorbent through: solvent selection; drying procedure; PEI loading %; regeneration method; gas composition; support selection; support pretreatment, etc.

Gen2 Sorbent (promising next step)

- Extremely stable sorbent with high CO₂ loadings (11 wt%).
- Provisional patent application filed.

RTI International

Sorbent Scale-Up

- 150 kg prepared by commercial manufacturer
- No agglomeration or PEI leaching in all conditions tested in vFBR system

Silica	Support	Amount	PEI loading	CO ₂ Capacity	FBR test	Density	PSD
Lab Sorbent	Silica A	100+ g	30 %	8.5 wt%	Pass	0.6 g/cc	75 – 250 um
Scaled-up Sorbent	Silica A	150 kg	30 %	8.9 wt%	Pass	0.6 g/cc	80 – 250 um

Next Steps

Bench-scale contactor and prototype system testing

- Demonstrate long-term stability of the sorbent and process equipment
- Demonstrate continuous operation of process under high-fidelity flue gas conditions
- Testing at RTI's Energy Technology Development Facility
- Parametric and long-term testing (1,000+ hours)
- Collect critical process data to perform detailed T&E assessment

Sorbent optimization and scale-up

- Further optimization and commercial production of Gen1 sorbent
- Integrate Gen2 sorbent advancements with fluidizable particle production
- Produce extra sorbent inventory for prototype testing (~ 150 kg)

Detailed technical and economic assessment

- Update economic analyses using bench- and prototype testing data
- Continue to show ability to achieve DOE/NETL programmatic goals

Application to other industrial sources of CO₂

- Currently demonstrating technology at cement plant in Norway Norcem (part of HeidelbergCement) Phase II approved in July 2014.
- Continue evaluating economic factors of NGCC application Masdar

Demonstration in Norway - Cement

HEIDELBERGCEMENTGroup

Objective: Demonstrate RTI's advanced, solid sorbent CO_2 capture process in an operating cement plant and evaluate economic feasibility

Norcem's Cement Plant – Brevik, Norway

Phase I – Complete

Photo Source: Norcem

- Performed sorbent exposure testing with real cement flue gas using lab-scale test unit
- Performed techno-economic study

Phase II – Awarded (July '14 to June '16)

 Pilot field testing of RTI's technology at Norcem's Brevik cement plant

Photo Source: Norcem

Funding provided by:

- The U.S. DOE/National Energy Technology Laboratory
 - Bruce Lani (NETL Project Manager)
- Masdar (Abu Dhabi Future Energy Company)

RTI Team	PSU Team	Masdar Team	BsCEU Build
 DeVaughn Body Chris Bonino Laura Douglas Ernie Johnson Martin Lee Paul Mobley Tony Perry Pradeep Sharma 	 Xiao Jiang Wenying Quan Siddarth Sitamraju Wenjia Wang Tianyu Zhang 	 Alexander Ritschel Mohammad Abu Zahra Dang Viet Quang Amaka Nwobi 	 AC Corporation C&H Insulation Dewberry Engineers Guy M Turner Harris Brothers PSRI Unitel Technologies Wesa Automation
• JP Shen			GRTI

INTERNATIONA