Advanced Solid Sorbents and Process Designs for Post-Combustion CO₂ Capture (DE-FE0007707)

RTI International

Luke Coleman, Justin Farmer, Atish Kataria, Marty Lail, Thomas Nelson, Mustapha Soukri, Jak Tanthana

Pennsylvania State University

Chunshan Song, Dongxiang Wang, Xiaoxing Wang
Address the technical hurdles to developing a solid sorbent-based CO₂ capture process by transitioning a promising sorbent chemistry to a low-cost sorbent suitable for use in a fluidized-bed process

This project combines previous technology development efforts: RTI (process) and PSU (sorbent)

Project Funding: $3,847,161
- DOE Share: $2,997,038
- Cost Share: $850,123

Period of Performance:
- 10/1/2011 to 6/30/2015

Specific Project Goals
- Improve stability, performance, and fluidizability of novel amine-based (PEI) “Molecular Basket Sorbents”
- Improve design of fluidized, moving-bed reactor; optimize operability and heat integration
- Prove that the technology reduces parasitic energy load and capital and operating costs associated with CO₂ capture (prototype testing & economic analyses)

- Project management
- Process design
- Fluidized-bed sorbent

Masdar New Ventures
Masdar Institute
Techno-economic evaluation of NGCC application

PSU’s EMS Energy Inst.
PEI and sorbent improvement
Sorbent Chemistry

- Polyethylenimine (PEI)

 Primary: \(\text{CO}_2 + 2RNH_2 \rightleftharpoons NH_4^+ + R_2NCOO^- \)

 Secondary: \(\text{CO}_2 + 2R_2NH \rightleftharpoons R_2NH_2^+ + R_2NCOO^- \)

 Tertiary: \(\text{CO}_2 + 2R_3N \rightleftharpoons R_4N^+ + R_2NCOO^- \)

Advantages

- Reduced energy consumption
- Reduced capital cost
- Avoids evaporative emissions
- Density of CO\(_2\) absorbing sites

Challenges

- Heat management
- Solids handling & control
- Physically strong sorbent
- Stability/leaching of PEI
Technical Approach & Scope

Start w/ preliminary economic screening

- Conducted detailed technical and economic evaluations
- **Basis:** DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants
- **Result:** Total cost of CO₂ captured estimated to be 39.7 $/T-CO₂ (SOTA Amine Process ~68$/T-CO₂)
- Further reduction needed → reduced power consumption & capital cost

Start w/ promising sorbent chemistry

- PSU's Molecular Basket Sorbents offer high CO₂ loading; reasonable heat of absorption (66 kJ/mol).

Development Needs:
- Improve thermal stability.
- Reduce leaching potential.
- Reduce production cost.
- Convert to fluidizable form.

Development Approach:
- Modify support selection.
- Simplify amine tethering.
- Scalable production methods.

Development Needs:
- Optimize reactor design and process arrangement.

Development Approach:
- Detailed fluidized bed reactor modeling.
- Bench-scale evaluation of reactors designs.
- Demonstration of process concept.
Technical Approach & Scope

Previous Work

<table>
<thead>
<tr>
<th>Proof-of-Concept / Feasibility</th>
</tr>
</thead>
</table>

Laboratory Validation (2011 – 2013)

- **Economic analysis**
 - *Milestone:* Favorable technology feasibility study

- **Sorbent development**
 - *Milestone:* Improved sorbent stability and production

- **Process development**
 - *Milestone:* Working multi-physics, CFD model of FMBR
 - *Milestone:* Fabrication-ready design and schedule for bench-scale prototype

Long-Term Performance (2014 – 2015)

- **Process Development**
 - *Milestone:* Fully operational bench-scale with process testing conditions optimized
 - *Milestone:* Completion of 1,000 hours of parametric and long-term testing

- **Updated Economics**
 - *Milestone:* Favorable technical, economic, environmental study (meets DOE targets)

Current Project

<table>
<thead>
<tr>
<th>2011-15</th>
</tr>
</thead>
</table>

Future Development

<table>
<thead>
<tr>
<th>2015 - 17</th>
<th>2018-22</th>
<th>> 2022</th>
</tr>
</thead>
</table>

Pilot

- 1 - 5 MW (eq)

Demo

- ~ 50 MW

Commercial

Technology Readiness Level

1 2 3 4 5 6 7 8 9

Prototype Build & Testing (2013 - 2014)

- **Field Testing of Prototype Unit**
 - *Milestone:* Operational bench-scale prototype capable of 90% CO₂ capture
 - *Milestone:* Successful scale-up of Gen1 sorbent with confirmation of maintained properties and performance compared to lab-scale production
Project Status

- Test Equipment
- Process Development Progress
- Bench-scale System Design and Build
- Sorbent Development Progress
- Sorbent Scale-up
- Next Steps
Packed-bed Reactor

- Fully-automated operation and data analysis; multi-cycle absorption-regeneration
- Rapid sorbent screening experiments
- Measure dynamic CO$_2$ loading & rate
- Test long-term effect of contaminants

“visual” Fluidized-bed Reactor

- Verify (visually) the fluidizability of PEI-supported CO$_2$ capture sorbents
- Operate with realistic process conditions
- Measure ΔP and temperature gradients
- Test optimal fluidization conditions
Objective

Design, build, and test a bench-scale system to evaluate optimal fluidized-bed reactor design and demonstrate long-term performance stability of PEI-based CO$_2$ sorbents.

Previous Work

- **Process design screening**: initial process design screening, heat transfer tests, and engineering evaluation, concluding that fluidized moving-bed design exhibits significant promise.

- **Fluidized-bed reactor model**: developed a FB reactor model to simulate the performance of conceptual fluidized-bed reactor configurations.

- **Bench-scale system design**: developed a detailed engineering design package of a bench-scale contactor evaluation unit (BsCEU). Designed to evaluate effectiveness of proposed reactor designs for CO$_2$ removal from flue gas.
ETDF is dedicated to hosting bench- and pilot-scale systems

- 60’ x 50’ x 45’ tall enclosed structure

ETDF is equipped with:
- Simulated flue gas generation
- closed-circuit chilled water loop
- steam generator
- air compressor
- electrical supply for multiple systems

BsCEU specifications:
- Flue gas throughput: 300 and 900 SLPM
- Solids circulation rate: 75 to 450 kg/h
- Sorbent inventory: ~75 kg of sorbent
BsCEU Testing Status

- Pressure & leak testing in parallel with mechanical completion
- Electrical completion and testing
- Field verification of system instrumentation and the data acquisition and control system
- Cold and hot gas flow verification
 - Heated gas flow, differential pressure validation
 - Verification of gas composition control
- Fluidization characterization with “commissioning material”
 - Demonstration of stable/controllable solids flow and circulation between Absorber and Regenerator
 - Calibration of valves and other control mechanisms
 - Verification of cooling/heating within Absorber and Regenerator

○ System operation and testing with CO₂ sorbent
 - Cold flow demonstration of stable and controllable flow of sorbent and circulation between stages and columns
 - CO₂ capture experiments
 - Demonstrate ability to achieve 90% CO₂ capture
 - Demonstrate effective heat management in Absorber/Regenerator
Objective

Improve the thermal and performance stability and production cost of PEI-based sorbents while transitioning fixed-bed MBS materials into a fluidizable form.

Previous Work

- Stability improvements through addition of moisture – reducing formation of urea.
- Stability improvements through PEI / support modifications.
- Suitable low-cost, commercial supports identified (1000x cost reduction).
- Converted sorbent to a fluidizable, strong particle.

Current Work

Gen1 Sorbent (chosen for scale-up)
- PEI on a fluidizable, commercially-produced silica support.
- Optimized Gen1 sorbent through: solvent selection; drying procedure; PEI loading %; regeneration method; gas composition; support selection; support pretreatment, etc.

Gen2 Sorbent (promising next step)
- Extremely stable sorbent with high CO₂ loadings (11 wt%).
- Provisional patent application filed.
Sorbent Scale-Up

- 150 kg prepared by commercial manufacturer
- No agglomeration or PEI leaching in all conditions tested in vFBR system

<table>
<thead>
<tr>
<th>Silica</th>
<th>Support</th>
<th>Amount</th>
<th>PEI loading</th>
<th>CO₂ Capacity</th>
<th>FBR test</th>
<th>Density</th>
<th>PSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sorbent</td>
<td>Silica A</td>
<td>100+ g</td>
<td>30 %</td>
<td>8.5 wt%</td>
<td>Pass</td>
<td>0.6 g/cc</td>
<td>75 – 250 um</td>
</tr>
<tr>
<td>Scaled-up Sorbent</td>
<td>Silica A</td>
<td>150 kg</td>
<td>30 %</td>
<td>8.9 wt%</td>
<td>Pass</td>
<td>0.6 g/cc</td>
<td>80 – 250 um</td>
</tr>
</tbody>
</table>
Bench-scale contactor and prototype system testing

- Demonstrate long-term stability of the sorbent and process equipment
- Demonstrate continuous operation of process under high-fidelity flue gas conditions
- Testing at RTI’s Energy Technology Development Facility
- Parametric and long-term testing (1,000+ hours)
- Collect critical process data to perform detailed T&E assessment

Sorbent optimization and scale-up

- Further optimization and commercial production of Gen1 sorbent
- Integrate Gen2 sorbent advancements with fluidizable particle production
- Produce extra sorbent inventory for prototype testing (~150 kg)

Detailed technical and economic assessment

- Update economic analyses using bench- and prototype testing data
- Continue to show ability to achieve DOE/NETL programmatic goals

Application to other industrial sources of CO₂

- Currently demonstrating technology at cement plant in Norway – Norcem (part of HeidelbergCement) – Phase II approved in July 2014.
- Continue evaluating economic factors of NGCC application - Masdar
Objective: Demonstrate RTI’s advanced, solid sorbent CO₂ capture process in an operating cement plant and evaluate economic feasibility

Phase I – Complete
- Performed sorbent exposure testing with real cement flue gas using lab-scale test unit
- Performed techno-economic study

Phase II – Awarded (July ‘14 to June ‘16)
- Pilot field testing of RTI’s technology at Norcem’s Brevik cement plant
Acknowledgements

Funding provided by:

- The U.S. DOE/National Energy Technology Laboratory
 - Bruce Lani (NETL Project Manager)
- Masdar (Abu Dhabi Future Energy Company)

RTI Team
- DeVaughn Body
- Chris Bonino
- Laura Douglas
- Ernie Johnson
- Martin Lee
- Paul Mobley
- Tony Perry
- Pradeep Sharma
- JP Shen

PSU Team
- Xiao Jiang
- Wenyi Quan
- Siddarth Sitamraju
- Wenjia Wang
- Tianyu Zhang

Masdar Team
- Alexander Ritschel
- Mohammad Abu Zahra
- Dang Viet Quang
- Amaka Nwobi

BsCEU Build
- AC Corporation
- C&H Insulation
- Dewberry Engineers
- Guy M Turner
- Harris Brothers
- PSRI
- Unitel Technologies
- Wesa Automation