the Energy to Lead

Pilot Test of a Nanoporous, Super-hydrophobic Membrane Contactor Process for Postcombustion CO₂ Capture

DOE Contract No. DE-FE0012829

S. James Zhou, Shiguang Li, Travis Pyrzynski, and Howard Meyer, *GTI* Yong Ding and Ben Bikson, *PoroGen* Song Wu and Sandhya Eswaran, *MHPS-AEE* Katherine Searcy, *Trimeric*

Presentation for 2014 NETL CO₂ Capture Technology Meeting

July 31, 2014

Funding and performance period

- Funding: \$12,544,638
 - DOE: \$10M
 - Cost share: \$2.54M (20% of the total budget)
 - GTI: \$1,150K
 - ICCI: \$600K
 - PoroGen: \$625K
 - MHPS-AEE: \$135K
- Performance period: Oct. 1, 2013 Sep. 30, 2017

Project objectives and goal

Objectives:

- Build a 1 MW_e equivalent pilot-scale CO₂ capture system (20 ton/day) using PEEK hollow fibers in a membrane contactor and conduct tests on flue gas at the NCCC
- Demonstrate a continuous, steady-state operation for a minimum of two months
- Gather data necessary for process scale-up

Goal

 Achieve DOE's Carbon Capture performance goal of 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured by 2025

Our team

Member	Specific Project Roles
gti _®	 Project management and planning EH&S analysis System design and construction Site preparation, system installation, and shakedown Pilot test at the NCCC
Porogen INNOVATIVE MEMBRANE PRODUCTS	PEEK hollow fiber and module developmentSupporting system design and construction
	 Advanced H3-1 solvents for HFC application Supporting techno-economic analysis
TRIMERIC CORPORATION	Techno-Economic Analysis
RAMGEN POWER SYSTEMS	Consulting support on gas compression
A CONTRACTOR OF	Site host

Timeline and scope

What is a membrane contactor?

- High surface area membrane device that facilitates mass transfer
- Gas on one side, liquid on other side

- Membrane does not wet out in contact with liquid
- Separation mechanism: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent

Process description

Polymer	Max service temperature (°C)
PTFE	250
PVDF	150
Polysulfone	160
PEEK	271

 The PEEK hollow fibers exhibit exceptional solvent resistance: exposure of fibers to MEA solution (30%) for 1,500 hours at 120 °C had no adverse effect on the mechanical properties or gas transport

Bench-scale development (Oct. 1, 2010 – Dec. 31, 2013): objective and scope

PEEK membrane: from fibers to commercial modules

9

Bench-scale membrane absorber study (over 140 tests)

- Gas feed (bore side): simulated flue gas compositions at temperature and pressure conditions after FGD
- Solvents (shell side): aMDEA (40 wt%) and activated K₂CO₃ (20 wt%)
- BP1 technical goal achieved

contaminants in feed

Parameters	Goal	aMDEA	K ₂ CO ₃
CO ₂ removal in one stage	≥ 90%	90%	94%
Gas side ΔP , psi	≤ 2	1.6	1.3
Mass transfer coefficient,(sec) ⁻¹	≥ 1	1.7	1.8

Performance not affected by O₂, SOx, NOx

Module for lab testing (Ø2" x 15" long, 1m²)

10

gti

Activated methyldiethanolamine = aMDEA

Bench-scale membrane desorber study

Technical goals achieved

Parameters	Goal	Mode III	Mode IV
CO ₂ purity	≥ 95%	97%	97%
CO ₂ stripping rate (kg/m ² /h)	≥ 0.25*	2.8	4.1

* Calculated based on a mass transfer coefficient of 1.0 (sec)⁻¹

Notes:

- 97% CO₂ purity, the rest is condensable water vapor
- Much higher CO₂ rate obtained in regeneration because trans-membrane pressure drop is used (higher pressure in liquid side than gas side), and liquid compression is of low cost (compared to gas compression)

Bench-scale: integrated absorber/ regeneration and field testing

Bench-scale field test process flow diagram

Bench-scale field test results with aMDEA and H3-1 solvents

Membrane contactor field performance: mass transfer coefficient for absorption

Solvent	L/G ratio, L/L	CO ₂ removal in one stage	Mass transfer coefficient, (sec) ⁻¹
aMDEA	0.0080	90.4%	1.2
H3-1	0.0044	92.7%	1.4

Mass transfer coefficient for conventional contactors: 0.0004-0.075 (sec)⁻¹

Preliminary process flow diagram for the 1MW pilot plant

NCCC's PC4

Our 1 MW_e system

PEEK membrane contactor system advantages

- Exceptional thermal, mechanical & chemical resistance
- Super-hydrophobic, non wetting, ensures independent gas & liquid flow under flue gas conditions
- High packing density via structured hollow fiber membrane module design for improved mass transfer
- Orders magnitude high mass transfer coefficient for CO₂ absorption and desorption for reduced absorber and desorber size
- Reduced CAPEX and OPEX

MHPS advanced H3-1 solvent advantages

- H3-1 solvent has been tested in our PEEK membrane contactors
- H3-1 test results show higher mass transfer coefficients than the aMDEA solvent
- Published data from NCCC and EERC show that the required solvent flow rate and heat duty of H3-1 are 18 to 26% and 33 to 42% lower than benchmark MEA solvent obtained from conventional column based absorption/desorption process testing

Technical and economic <u>challenges</u> of applying membrane contactor to existing PC plants

- Performance Maximize overall mass transfer coefficient to reduce absorption system size
- Durability Long-term membrane life in contact with solvent
 - Improve membrane hydrophobicity
- Contactor scale-up and cost reduction
 - Make larger diameter module, module packaging to reduce module cost

Techno-economic analysis results based on bench-scale test results

Case	COE, \$/MWhr	Increase in COE	\$/Tonne CO ₂ Captured*		
DOE Case 11 no capture	80.95				
DOE Case 12 state of the art (amine	147.30	82%	\$66.47		
plant)					
Membrane contactor with aMDEA	126.28	56%	\$54.69		
Membrane contactor @ K _{Ga} =2 (1/s)	111.57	38%	\$47.40		
R&D strategy to meet DOE's	target				
Improved membrane performance	CAF	EX and OPE	EX savings		
Membrane fabrication cost		CAPEX sav	vings		
Module materials of construction		CAPEX sav	vings		
Advanced H3-1 solvent	OPEX savings				
Optimizing the process configuration and operating conditions to minimize energy consumption	OPEX Savings				

Slipstream test project BP1 milestones, schedule and decision points

	Month	1	2	3	4	5	6	7	8	9	10	11	12
Task 1	- Project Management												е
				Α									В
Task 2.	1 – Preliminary TEA			а	1								
Task 2.	2 – Preliminary EH&S study			b	1								
	 Determination of scaling parameters for PU hollow fiber membrane modules 								С				
Task 4.	1 – QC testing of membrane modules								С				
Task 4.	2 – Membrane contactor tests									-			d
Task 5	– Design and costing of the 1 MW $_{e}$ system												d

	Milestones		Decision Points
а	Complete preliminary Techno-Economic Analysis	Α	GO/No-GO decision point based on results from
b	study		preliminary TEA and EH&S studies
	Complete preliminary EH&S study		
С	Achieve intrinsic CO ₂ permeances of 1,700 to 2,000 GPU in 2-inch diameter modules	В	Successful completion of all work proposed in Phase I, and satisfactory meeting all milestones
d	Issue pilot-plant design package		
e	Submit Phase I report		

Scope of work for other slipstream test budget periods

BP2

- 8-inch diameter commercial-sized module fabrication
- Parts and equipment procurement
- 1 MW_e CO₂ capture system construction

BP3

- Site preparation and system installation at the NCCC
- Procure H3-1 solvent for the pilot testing
- Test system shake down at NCCC
- Parametric testing at NCCC performed prior to continuous testing

BP4

- Identify operational conditions for the continuous steady-state run at NCCC
- Run continuous steady-state tests for a minimum of two months
- Gather data necessary for further process scale-up
- Final Techno-Economic Analysis and EH&S study

Success criteria and decision points

Decision Point	Date	Success Criteria
Go/no-go decision points	9/30/2014	 PEEK hollow fiber membrane: membrane intrinsic permeance 1,700 to 2,000; and Final pilot-plant design package submitted to DOE
Go/no-go decision points	9/30/2015	
Go/no-go decision points	9/30/2016	 The 1 MW_e pilot system installed at NCCC; Operating to shows ≥90% CO₂ removal rate in one stage, membrane contactor overall volumetric mass transfer coefficient ≥2.0 (sec)⁻¹.
Completion of the project	9/30/2017	 Demonstrated a continuous steady-state operation for a minimum of two months; and Final Techno-Economic Analysis delivered to DOE, and Final report shows 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured achieved

Risks and mitigation strategies

Description of Risk	Risk Mitigation Strategies					
Technical Risks						
Particulates fouling the membrane	Filters and guards for particulates					
Pressure drop across the module affects parasitic load.	Fiber dimension					
Process risks						
Cost of the process not in line with expected outcome	Capital costs reduction by increasing module diameter and scale of manufacturing. Operating costs reduction by using advanced solvents					
Corrosion or fouling of membrane system equipment	Materials of construction, process modification, pre- treatments					
EH&S implications of the proposed	l technology					
Environmental, health, and safety during testing and commercial implementation	Identify potential EH&S issues related to module fabrication, system operations/maintenance/decommissioning. Establish plans to mitigate potential hazards, wastes and emissions.					

Plans for future testing/development/commercialization

Time	Development	Module diameter	Projected # of modules*
By 2013	Bench-scale (Successfully Completed)	4-inch	1
By 2017	1 MWe pilot scale (In Progress)	8-inch	17
By 2020	25 MM/a domonstration	8-inch	425
By 2020	25 MWe demonstration	30-inch	30

- * Calculated based on:
 - Module area:
 - Current Ø8-inch module: 100 m²
 - Projected Ø16-inch module: 400 m²
 - Projected Ø30-inch module: 1400 m²

PoroGen's new facility currently has equipment capacity to produce 1,000 eight-inch membrane modules annually.

Summary

Promising technology based on field tests

- \geq 90% CO₂ removal in one stage
- Mass transfer coefficient of 1.7 (sec)⁻¹, which is over one order of magnitude greater than conventional contactors
- Pilot-scale Phase I research progress
 - Preliminary EH&S study completed
 - TEA in progress

26

Acknowledgements

- Financial support
 U.S. DEPARTMENT OF ENERGY
- DOE NETL José Figueroa
- ICCI Dr. Debalina Dasgupta