

Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS™)

NETL CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania July 29-Aug 1, 2014

Steve Benson, Dan Laudal, Harry Feilen, Kirtipal Barse, Scott Johnson University of North Dakota – Institute for Energy Studies

Srivats Srinivasachar Envergex LLC

Presentation Overview

- Project Overview
- Technology Fundamentals
- Progress and Current Status
- Future Plans

Funding

- Initial Funding STTR project Envergex and UND
- Project Funding
 - U.S. Department of Energy Carbon Dioxide Capture RD&D program
 - Bench-scale testing
 - October 2011 to September 2014 (No-cost extension through Dec. 2014)
- Total Project Funding: \$3,690,000
 - DOE Share: \$2,952,000
 - Cost Share: \$738,000

Project Participants

- US Department of Energy NETL
- UND Institute for Energy Studies
- Envergex LLC
- Lignite Energy Council/NDIC
- ALLETE Group
 - Minnesota Power
 - BNI Coal
- SaskPower
- Barr Engineering
- Solex Thermal Science

Project Objectives

- Overall Project Objectives
 - Improve current state-of-the-art (amine scrubbing) by developing a novel sorbent-based, post-combustion CO₂ capture technology
 - Achieve at least 90% CO₂ removal from coal combustion flue gas
 - Demonstrate progress toward DOE target of less that 35% increase in levelized cost of electricity (LCOE) for plant with CO₂ capture
 - Demonstrate at bench-scale level a sorbent-based technology for capture of CO_2 by hybrid sorption (CACHYSTM) from coal combustion flue gas
 - Develop key information on sorbent and technology effectiveness

Technology Background and Fundamentals

CACHYS™ Hybrid Sorption Process

- Key component metal carbonate salt
- Reacts with CO₂ to form adduct. Reversible with heat addition
- Additive/process conditions enhance adsorption kinetics + reduce adsorption/regeneration energy

CACHYSTM Process Advantages

<u>Advantages</u>

- ✓ Low reaction heat ~ 40-80 kJ/mol CO₂ (novel chemistry and process conditions)
- ✓ High sorbent capacity (> 7 g CO₂/100 gm sorbent)
- ✓ Increased sorption kinetics (smallersized equipment)
- ✓ Use of low cost, abundantly available materials for sorbent
- ✓ Use of commercially-demonstrated equipment design/configuration
- ✓ Reduced capital and operating costs

CACHYSTM Process Testing Objectives

- Confirmation of energetics
- Confirmation of sorbent capacity
- Confirmation of reaction kinetics
- Sorbent integrity
- Sorbent handling

Progress and Current Status

Technical Approach and Project Scope

- Scope of work includes eight main tasks
 - Task 1: Project Management and Planning
 - Task 2: Initial Technology and Economic Feasibility Study
 - Task 3: Determination of Hybrid Sorbent Performance Metrics
 - Task 4: Bench-Scale Process Design
 - Task 5: Bench-Scale Process Procurement and Construction
 - Task 6: Initial Operation of the Bench-Scale Unit
 - Task 7: Bench-Scale Process Testing
 - Task 8: Final Process Assessment

Significant Accomplishments

TGA/DSC Desorption Energy Data

- Desorption energy ~ 30-80 kJ/mol CO₂
- Below target of 80kJ/mol CO₂ and significantly lower than standard carbonate process (130 kJ/mol CO₂)

Fixed/Bubbling Bed Reactor: Multi-cycle Sorbent Testing

 Both sorbents exceeded goal of 7.0 g CO₂/100g of sorbent and maintained capacity over the 100 cycle tests

Technical and Economic Feasibility Study

Initial Technical and Economic Feasibility (550MW_e)

- Total O&M \$28,290,000

Capital Charge \$102,504,000

- Total Cost \$130,794,000

- CO₂ Captured 3,614,000 Tons

- Cost of CO₂ Capture \$36.19/ton

Cost of Electricity Increase 40%

Bench-Scale Facility

- Sorbent manufacturing
- Sorbent drying system rotary tube dryer

SEM Image – CO₂ Loaded

ENERGY STUDIES

SEM Image – Regenerated

ENERGY STUDIES

Bench-Scale System Design – Block Flow Diagram

Bench-Scale Facility

- 30 ft. tall process tower fabricated by UND
- Flue gas sampled from either of two coal-fired boilers

Summary of Bench-scale Results to Date

Parametric Testing:

- Short duration tests aimed at optimizing specific parameters
- > Tests to date have focused on operation of individual process components
- Longer term, integrated tests are currently underway

• Adsorber:

- Demonstration of hybrid sorption benefits large increases in capture and kinetics
- Capture as high as 85% has been achieved to date
- Working capacity of > 6 wt% (75% utilization after adsorption, 20% after regeneration)
- > Identified optimal process conditions and design basis

Regenerator:

- Demonstration of hybrid sorption benefits reduction of the regeneration energy
- CO₂ purity ~99%
- Demonstrated positive impact of direct steam on desorption rate and energetics

Adsorber Testing – Data Summary

A Zero Additive	F	Increased Fresh Feed
B Sorbent Recirculation	G	Increased Gas Res. Time
C Sorbent with Additive	Н	Decreased Flue Gas CO2
D Sorbent Recirculation	ı	Increased Gas Res. Time
E Increased Additive Loading		

Regenerator Testing

Use of direct steam facilitates CO₂ desorption

Regenerator Testing

 Use of direct steam increases sorbent temperature via exothermic reaction that reduces regeneration energy – confirms observations during lab-scale work

Integrated Testing

 Very good control of the exothermic heat of reaction in the adsorber

Operational Challenges/Mitigation Strategies

Challenges:

- Adsorber
 - Capture efficiency
 - Reliable sorbent circulation
- Regenerator
 - Condensation and flowability
 - Desorption rate

Mitigation Strategies:

- Adsorber
 - Longer residence time/sorbent recirculation
 - > Ensure sufficiently large surge volumes
- Regenerator
 - ➤ Identification of stagnant zones
 - Ensure heating of all contact surfaces
 - Use of "soot blowers" and vibration
 - Online cleaning
 - Higher temperature operation

Scale up to larger diameter beds will alleviate many of the challenges experienced during bench scale operation

Remaining Work

Complete Bench-scale Testing:

- Sorbent and process performance
- ➤ Identify attrition rates and performance with SO₂-containing flue gas
- Adsorber and regenerator multi-cycle evaluation
- Obtain data for scale-up and process economics
- Determine environmental, health and safety (EH&S) concerns

Final Process Assessment:

- > EH&S
- Final Technical and Economic Feasibility Study

Future Plans

E-CACHYSTM

- Developed as part of a DOE SBIR/STTR Phase I grant
- ➢ Goal to increase sorbent capacity by 2x CACHYS[™] sorbents.
- Capacity targets were achieved while maintaining other benefits of hybrid sorption
- Phase II application was submitted to DOE received notice of intent to award

Phase II STTR

- Develop improved sorbent manufacturing methodologies
- Modification of the existing bench-scale facility to accommodate improved sorbent
- Demonstrate a new process configuration that greatly reduces the impact of sorbent attrition
- ➤ Develop an improved hybrid sorption technology that will further reduce the cost of CO₂ capture

Acknowledgements

- Project Funding and Cost Share
 - U.S. Department of Energy (DOE-NETL)
 - Lignite Energy Council/NDIC
 - ALLETE (Minnesota Power and BNI Coal)
 - SaskPower
 - Solex Thermal
 - UND
- DOE-NETL Project Manager Andrew Jones

Contact Information

Steven A. Benson
Institute for Energy Studies, University of North Dakota
(701) 777-5177; Mobile: (701) 213-7070
steve.benson@engr.und.edu

Dan Laudal
Institute for Energy Studies, University of North Dakota
(701) 777-3456; Mobile: (701) 330-3241
daniel.laudal@engr.und.edu

Harry Feilen
Institute for Energy Studies, University of North Dakota
(701) 777-2730; Mobile: (701) 739-1199
harry.feilen@engr.und.edu

Srivats Srinivasachar
Envergex LLC
(508) 347-2933; Mobile: (508) 479-3784
srivats.srinivasachar@envergex.com

