

ION Novel Solvent System for CO₂ Capture DE-FE0013303

Nathan Brown ION Engineering

2014 NETL CO₂ Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 29 - 31, 2014

Project Overview

DE-FE0013303 ION Solvent System for CO₂ Capture

- 45 month project (Oct. 2013 Jun. 2017)
- Pilot Project Objectives:
 - > 1k hr S.S. Testing in Real Process Environment (TLR-7)
 - > Determine solvent lifetime
- \$20.2M total project funding
 - > \$15.0M DOE
 - > \$5.2M ION

Bold Science for Clean Energy

Nebraska Public Power District Always there when you need us

Project Overview

Project Participants & Roles

Bold Science for Clean Energy

Technical Background

Basic Fossil Power

- Fuel Source (coal, natural gas...) is combusted, releasing energy (heat)
- Boiler Energy from combustion is transferred to water (steam)
- Turbines Convert energy carried by steam into electricity (e-)

Fossil Power with Carbon Capture

Carbon Capture Requires Energy

ION CO₂ Capture Technology

2nd Generation - Adv. Solvent

- Non-Aqueous Solvent Matrix
 - Manipulation of physical and chemical solvent properties
 - Impact reaction rates, extent of reaction & thermal requirements
- Solvents are H₂O miscible & tolerant

ION Solvent Process

- 11
- **Retrofit** for 1st generation aqueous amine processes
 - Utilize existing process equipment & capital investments
- Compatible with aqueous amine CO₂ capture processes
- Leverage existing know-how, R&D and technology

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- >How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- >How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent
 - Increase CO₂ solubility & employ less reactive Amine...

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- >How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent
 - Increase CO₂ solubility & employ less reactive Amine...

Increased Physical CO₂ Solubility will drive chemical reaction between CO₂ + Amine further towards products -> CO₂-Amine

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- >How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent
 - Increase CO₂ solubility & employ less reactive Amine...

Increased Physical CO₂ Solubility will drive chemical reaction between CO₂ + Amine further towards products -> CO₂-Amine

- ION Lead Solvent
 - Demonstrated faster absorption kinetics (Aq. MEA Benchmark)
 - Increased physical CO₂ solubility

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- ≻How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent
 - Increase CO₂ solubility & employ less reactive Amine...

Increased Physical CO₂ Solubility will drive chemical reaction between CO₂ + Amine further towards products -> CO₂-Amine

- ION Lead Solvent
 - Demonstrated faster absorption kinetics (Aq. MEA Benchmark)
 - Increased physical CO₂ solubility

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats
- ION Lead Solvent
 - Demonstrated Reduced Reboiler Duty OION & EERC Test Facilities
 - Suggestive of Reduced Latent Heat

Faster Absorption Kinetics

- CO₂ (gas)... -> CO₂ (dissolved in liquid)... -> CO₂-Amine
- ≻How do you speed this up?
 - More Reactive Amine
 - Increase CO₂ solubility in solvent
 - Increase CO₂ solubility & employ less reactive Amine...

Increased Physical CO₂ Solubility will drive chemical reaction between CO₂ + Amine further towards products -> CO₂-Amine

ION Lead Solvent

- Demonstrated faster absorption kinetics (Aq. MEA Benchmark)
- Increased physical CO₂ solubility

Reduced Regeneration Req.

- > Initially Founders' Primary Focus
 - Aim Reduce Latent Heats

ION Lead Solvent

- Demonstrated Reduced Reboiler Duty OION & EERC Test Facilities
- Suggestive of Reduced Latent Heat
- Alternative Hypothesizes...

OAre latent heats being reduced...

- Imp. of Lean/Rich x-exchange heat balance
- Physical CO₂ Solubility in Solvent at Stripping Temperatures
- Olmpact of solvent concentration profile throughout stripping column

Results from 72 hr test at EERC

Impact on Plant Performance

	Case 10 Aq-MEA	ION
Working Capacity @ 90% CO ₂ Removal	1.0	35-45% increase
Regeneration Energy	1.0	35-45% reduction
Plant HHV (Base = 37%)	26%	31%
Net Plant Efficiency, (relative to no capture)	29% decrease	16% decrease

Advantages & Challenges

<u>Advantages</u>

- Regeneration energy
- Circulation rates
- Auxiliary load
- Make-up water
- Established engineering process

<u>Challenges</u>

- Overall capture costs
- Access to CO₂ utilization sites
- Availability of project financing
- Market demand
- Regulatory pressure

Technical Approach & Project Scope

ION's Slipstream Pilot Project

Objectives:

22

 Build & Operate a 0.5 – 1.0 MW Slipstream Pilot
1k hr S.S. Testing in Real Process Environment (TLR-7)
Determine solvent lifetime

Success Criteria:

- Meet or Exceed DOE's goals for 2024:
 - 90% capture
 - > 95% CO₂ purity
 - Less than \$40/ton

PHASE 1

- (Q3 2013)
- Pilot Design
- Engineering
- Layout & Integration
- Costing

N Engineering

Phase 2

- (Q1 2015)
- Procurement
- Construction & Fabrication
- Installation
- Commissioning

PHASE 3 (Q2 2016)

- Pilot Operation
- Benchmarking
- ION Solvent Demonstration
- Data Analysis

Project Schedule

			Budget Period 1													Budget Period 2													Budget Period 3													
ION Eng		2013 2014													2015													2016									2017					
	Resource Loaded Schedule		Q1		Q2		Q3 / A M J		-	Q4		_	Q5			Q1 J F M			Q2 A M J		Q3		_	Q4 OND		Ι.	Q5		Q1		Q2		Ŧ	Q3 D N D		Q4		\square	Q5			
		0	Ν	ויי	1 1	· IV		IVI	1	1	Α	5	0	N		1 1				1,	1	Α	5	0 1		11	F			11	1	A	510		Р	1	<u>- Iv</u>			1,		
<u>Task</u>	Description	ļ	II								I	l								<u>.</u>							I						l		I					.i		
1.0	Project Management	⊢																																								
		1					1					Î						1		1			Î			1									1			1				
Budget Pe	riod 1	ļ																-																								
2.0	Initial Slipstream Project Review (<90 days)						-											-		•						-									•					÷		
3.0	Site Selection and Permitting	Ι					1					ĺ		Ĭ				Ì		Ì			Ĩ		Ì								1							1		
4.0	Final Pilot & Systems Design Package	ļ																		ļ																				ļ		
Budget Pe	eriod 2																	-								-														·		
5.0	Procure Pilot Plant & Site Equipment			-		-	-																																	+		
6.0	Pilot Plant & Site Construction	l																																								
7.0	Pilot Plant Shakedown	.																																								
8.0	Final Test Plan Development	ļ					-											-												-												
Budget Pe	eriod <u>3</u>	ł																																								
9.0	Baseline & Solvent Testing	ļ																																								
10.0	Data Acquisition, Reduction and Analysis	t																		÷					-	·																
11.0 12.0	Final Systems Engineering Analysis Pilot Decommissioning and Dismantle						-											-																								

Success Criteria at Decision Points

• Conclusion of BP 1 12/31/15

- Completion of techno-economic assessment demonstrating potential to meet DOE objectives for second generation solvents for 2025.
- > Selection of Host Site.
- > Completion of final design package based on updated modeling and verification testing.
- Conclusion of BP 2 3/31/16
 - Completion of pilot systems construction, installation and successful shakedown, demonstrating system operational readiness.
 - > Procurement and preparation of ION solvents for testing.

Experimental – Slipstream Testing

1,000 Steady State Testing... ION Solvent w/ 30% Aq. MEA Benchmark

- Mass Balances
 - ≻ CO₂ Scrubber
 - > Absorber / Stripper Unit Operations
 - > Water-Wash / Amine Scrubbing Volatile Solvent Loss
- Heat Balances
 - > X-Exchange & Reboiler Duty
 - > Absorber Intercooling (parametric)
- Solvent Degradation
- HSS accumulation
- Corrosion Coupons

Progress, Current Status of Project

25

26

http://maps.google.com

Project Status

BP1 Project Status 65% Complete (Oct 2013 – Dec 2014)

- Task 2: Initial Slipstream Project Reviews 80% Complete
 - > iTEA Submitted, reviewed, in revision
 - > iEH&S Submitted, in review
- Task 3: Site Selection and Permitting 65% Complete
 - > Host Site Selection Complete
 - Permitting underway
- Task 4: Final Pilot System Design 60% Complete
 - > Basic Engineering Submitted to ION, Final Review Underway

Task 2: Initial Project Reviews

Accomplishments:

- > ION and Trimeric completed the Initial Techno Economic Assessment (iTEA) and submitted it to DOE for review.
- > ION and Hellman & Associates completed the Initial EH&S Risk Assessment (iEH&S) and submitted it to DOE for review.
- Technical Problems and Challenges:
 - ≻ None

- Next Steps:
 - > Incorporation of feedback from DOE on iTEA and re-submittal
 - > If required, incorporation of feedback from DOE on iEH&S and resubmittal

Task 3: Site Selection and Permitting

Accomplishments:

- > Evaluation of two potential host sites:
 - GGS Nebraska Public Power District's Gerald Gentleman Station in Sutherland Nebraska
 - NC3 Southern Company's Wilsonville Power Systems Facility in Wilsonville Alabama
- > NC3 was decided upon as the host site for the slipstream project.
- Technical Problems and Challenges:
 - ≻ None

29

• Next Steps:

- > Confirmation of permitting requirements at NC3
- > Negotiate NC3 Technology Collaboration Agreement (TCA)

Task 4: Final Pilot Systems Design

Accomplishments:

- > Basic design package reviewed and approved, detailed design initiated
- > PHA performed with Sulzer
- > User Requirements defined for:
 - Site Integration
 - Mobile Lab Design
 - Automation & Controls (Final Process Control Design)
- Technical Problems and Challenges:
 - ≻ None
- Next Steps:
 - » NC3 pilot bay structural & equipment layout design
 - Sulzer detailed design package and cost estimate
 - > Design and cost estimate for site integration and the mobile lab

Task 4: Updated Modeling Effort

• Accomplishments:

- > FT-IT & NMR spectra of CO₂ absorption peak identification & standard curves
- > Wetted wall gas/liquid fabricated
- Equilibrium gas/liquid contact cell fabricated to measure solvent loadings at a larger range of CO₂ partial pressures. Focus is on low CO₂ partial pressures
- Technical Problems and Challenges:
 - > ATR probe faulty, ~2-3 month delay for replacement
 - > Wetted Wall Column Liquid circulation design led to liquid slip past the pump (not positive displacement). Re-routing of the liquid circulation path through the contactor allowed for steady circulation.
- Next Steps:
 - > Complete calibration of FT-IR
 - > Measurement of low partial pressure CO_2 solubility
 - Detailed measurement of CO₂ absorption/reaction kinetics

Future Testing, Development & Commercialization

Development / Commercialization

33

<u>CO₂ Capture for Coal & NGCC Fired Power Generation</u>

CCUS & EOR Feasibility & Costing Studies

Summary of Solvent Performance

Features

- Fast CO₂ absorption & desorption kinetics
- Less regeneration energy

Demonstrated Performance

- 1.5x solvent working capacity cf. aqueous amines
- > 50% lower regeneration energy cf. aqueous amines

Advantages

- Lower CAPEX & OPEX
- Lower parasitic load
- Less solvent degradation
- Established engineering process
- Compatible with most aqueous amine capture processes in development

Thank you

Decarbonizing Fossil Fuel Emissions Nathan Brown, VP R&D, ION Engineering