Combined Pressure and Temperature Contrast and Surface-enhanced Separation of Carbon-dioxide for Post-combustion Carbon Capture

DOE Project # DE0007531
Project Manager: Ms. Elaine Everitt

Dr. Michael S. Wong
Professor of Chemical and Biomolecular Engineering
Rice University
NETL CO₂ Capture Technology Meeting
July 31, 2014
Outline

- Project Overview
- Project Budget
- Project objectives and technical approach
- Progress on process model to simulate gas/liquid flow and reaction in integrated CO₂ absorber/desorber
- Screening of metal oxide for CO₂ desorption/amine regeneration
- Summary and Conclusions
Project Overview

- Project funding under DOE agreement – DE-FE0007531
- Total project cost - $960,811 over three years. Federal share: $768,647 | Non-federal share: $192,164
- Contract awarded executed October 2011
- **Project duration**: 10/2011 – 3/2015
- **Primary project goal**: Performance of bench-scale R&D to demonstrate and develop Rice University’s “combined pressure and temperature contrast and surface-enhanced separation of CO$_2$ for post-combustion carbon capture to meet DOE’s goal of at least 90% CO$_2$ removal at no more than 35% increase in the cost of electricity”
Project Team

Project Director

Michael Wong
Professor in Chemical & Biomolecular Engineering & Chemistry

Co-Project Investigator

George Hirasaki
A J. Hartsook Professor in Chemical & Biomolecular Engineering

Co-Project Investigator

Kenneth Cox
Professor-in-practice in Chemical and Biomolecular Engineering

Co-Project Investigator

Edward Billups
Professor in Chemistry

Postdoctoral Associate

Zhen Wang
PhD, Thermal Power Engineering (ZJU, 2014)

Postdoctoral Associate

Mayank Gupta
PhD, Chemical Engineering (LSU, 2010)

Undergrad Researcher

Colin Shaw
Chemical & Biomolecular Engineering

Past Members

Sumedh Warudkar
PhD (April 2013)

Jerimiah Forsythe
PhD, Chemistry (LSU, 2011)
Project Budget

<table>
<thead>
<tr>
<th>Budget Period Object Class Category</th>
<th>Budget Period 1 (10.01.11 – 09.30.12)</th>
<th>Budget Period 2 (10.01.12 – 12.31.13)</th>
<th>Budget Period 3 (01.01.14 – 03.31.15)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$134,079</td>
<td>$180,738</td>
<td>$113,637</td>
<td>$428,454</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>$28,586</td>
<td>$40,953</td>
<td>$29,811</td>
<td>$99,350</td>
</tr>
<tr>
<td>Travel</td>
<td>$4,700</td>
<td>$4,700</td>
<td>$4,100</td>
<td>$13,500</td>
</tr>
<tr>
<td>Equipment</td>
<td>$27,035</td>
<td>$0</td>
<td>$0</td>
<td>$27,035</td>
</tr>
<tr>
<td>Supplies</td>
<td>$25,000</td>
<td>$15,000</td>
<td>$15,000</td>
<td>$55,000</td>
</tr>
<tr>
<td>Contractual</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Construction</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Other</td>
<td>$11,600</td>
<td>$10,480</td>
<td>$600</td>
<td>$22,680</td>
</tr>
<tr>
<td>Total Direct Charges</td>
<td>$231,000</td>
<td>$251,871</td>
<td>$163,148</td>
<td>$646,019</td>
</tr>
<tr>
<td>Indirect Charges</td>
<td>$102,094</td>
<td>$127,045</td>
<td>$85,653</td>
<td>$314,792</td>
</tr>
<tr>
<td>Federal Share</td>
<td>$243,621</td>
<td>$327,568</td>
<td>$197,458</td>
<td>$768,647</td>
</tr>
<tr>
<td>Non-Federal Share</td>
<td>$89,473</td>
<td>$51,348</td>
<td>$51,343</td>
<td>$192,164</td>
</tr>
<tr>
<td>Total</td>
<td>$333,094</td>
<td>$378,916</td>
<td>$248,801</td>
<td>$960,811</td>
</tr>
</tbody>
</table>
Objectives

- Develop a CO₂ capture process that uses a single integrated unit that combines both the absorber and desorber columns.
- Use waste heat for absorbent regeneration instead of low-pressure steam by operating the desorber section of the integrated unit under vacuum.
- Develop a 2-D model to simulate the CO₂ absorption process, to test different configurations, and to optimize the material properties (i.e., pore-size distribution, aspect ratio, etc.).
- Reduce energy requirement by lowering the desorption temperature with the addition of a metal oxide.
Technical Approach

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO₂

- Waste Heat
- Amine Absorption for Carbon Capture
- Vacuum Stripping
- Metal Oxides
- Integrated Absorber-Stripper

Diagram:
- Lean Absorbent (in)
- Low CO₂ gas (out)
- Moist CO₂
- Absorption Side
- Desorption Side
- Heat Exchanger
- Reboiler
- Cooled Flue gas
- Lean Absorbent (out)
- Steam
Advantages

- Reduction of space requirement and capital cost due to integration of absorber and desorber sections into a single unit.

- Favorable characteristics for mass transfer because ceramic gas-liquid contactors have large geometric surface areas.

- Cost saving and less energy requirement due to low desorption temperature:
 - Metal oxide catalyzes the desorption of CO₂
 - Moderate vacuum helps desorption to be carried out at reduced temperatures.
Key milestones

- Preliminary Technical and Economic Feasibility Study
- Bench-scale Prototype Design and Test
- Process modeling and simulation (1D and 2D model)
- Addition of metal oxide in desorption zone
- Technical and Economic Feasibility Study; Technology EH&S Risk Assessment

Timeline:
- 10/2011-6/2012
- 6/2012-4/2013
- 9/2012-12/2014
- 4/2014-10/2014
- 10/2014-3/2015
Content of Today’s Talk

- Progress on process model to simulate gas/liquid flow and reaction in integrated CO\textsubscript{2} absorber/desorber unit (COMSOL)
 - Pressure drop, flooding prediction in 1D model
 - CO\textsubscript{2} absorption performance prediction in 1D model
 - Gas/liquid flow simulation in 2D model

- Screening of metal oxides that can enhance CO\textsubscript{2} desorption from amine solution at lower stripping temperature
Experimental Setup for Pressure Drop in 1D Column

α-Al₂O₃ ceramic foam

P_{top}

P_{bottom}

Gas

Liquid

20 PPI

30 PPI

45 PPI

Scanning Electron Micrographs of Ceramic Foam: (a) 50x (b) 280x
Material Properties

Advantages of ceramic foam:
1. Low bulk density and pressure drop
2. Very high geometric surface area and macro-porosity (80%-90%)
3. Regulated pore-size and ease of reproducibility of structure
4. Low pressure drop
5. High structural uniformity

<table>
<thead>
<tr>
<th>Packing Type</th>
<th>Structure</th>
<th>Porosity (%)</th>
<th>S (m²/m³)</th>
<th>Bulk density (g/cm³)</th>
<th>Equivalent Pore diameter (mm)</th>
<th>Permeability (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al₂O₃ Ceramic Foam</td>
<td>20-PPI<sup>a</sup></td>
<td>85</td>
<td>700<sup>b</sup></td>
<td>0.60<sup>d</sup></td>
<td>1.28</td>
<td>8.0x10⁻⁹</td>
</tr>
<tr>
<td></td>
<td>30-PPI</td>
<td>85</td>
<td>900<sup>b</sup></td>
<td>0.65<sup>d</sup></td>
<td>1.00</td>
<td>7.3x10⁻⁹</td>
</tr>
<tr>
<td></td>
<td>45-PPI</td>
<td>84</td>
<td>1400<sup>b</sup></td>
<td>0.71<sup>d</sup></td>
<td>0.60</td>
<td>6.2x10⁻⁹</td>
</tr>
<tr>
<td>Random Packing<sup>c</sup></td>
<td>Raschig Ring</td>
<td>62.6</td>
<td>239</td>
<td>0.58<sup>e</sup></td>
<td>1.50</td>
<td>3.87x10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>Pall Ring</td>
<td>94.2</td>
<td>232</td>
<td>0.48<sup>e</sup></td>
<td>2.50</td>
<td>3.53x10⁻⁷</td>
</tr>
</tbody>
</table>

(a) PPI: Number of pores per linear inch length; (b) C.P.Stemmet, IChemE, 2006 (c) Jerzy Maćkowiak, IChemE, 2011 (d) www.ask-chemicals.com
(e) http://www.tower-packing.com (f) permeability of packing was calculated by \[k = \frac{3\phi d^2}{50} \]
Predicted Pressure drops under Different Gas Velocities

- **Continuity equation (Steady-state)**

\[\rho_i \nabla \cdot U_i = 0 \]

- **Momentum Balance Equation (Steady-state)**

\[-\nabla \cdot p_L - \frac{\mu_L}{f_L K} U_L + \rho_L g \nabla D = 0 \quad \text{Darcy's Law} \]

\[-\nabla \cdot p_G - \frac{\mu_G}{f_G K} U_G + \rho_G g \nabla D = 0 \quad \nabla \cdot p_G = \nabla \cdot p_L \]
Predicted and Experimental Pressure Drops in 20ppi Ceramic Foam

(a) Liquid flow rate 10 mL/min
(b) Liquid flow rate 30 mL/min
(c) Liquid flow rate 50 mL/min

Packing Height: 30.5 cm
Liquid phase: water @25 °C
Gas Phase: air

(a) Liquid flow rate 10 mL/min
(b) Liquid flow rate 30 mL/min
(c) Liquid flow rate 50 mL/min
Predicted and Experimental Drops in Ceramic foams

Packing Height: 30.5 cm
Liquid phase: water @25 °C
Gas Phase: air
Liquid flow rate 50 mL/min
Flooding Point Prediction

Liquid holdup = \(\frac{\text{Volume of liquid in porous media}}{\text{void volume}}\)

Typical liquid holdup for different gas and liquid Reynolds numbers. (Stemmet et al. 2005)
Operating Zone in 20-PPI Ceramic Foam

Figures: Modelling results of the liquid holdup versus gas flow rate:

- 20-PPI ceramic foam; Packing Height: 30.5 cm; Liquid phase: water @25°C; Gas Phase: air
Absorbent:
Aqueous Diglycolamine (DGA) 30 wt%

Structure:
\[
\text{HO} - \text{O} - \text{NH}_2
\]

Operating conditions:
- Inlet CO\(_2\) concentration: 13 v/v%
- Absorption temperature: 25 °C
- Ceramic foam: 20-PPI
Model Equations and Major Reactions

- **Mass Balance of Species i**
 \[\nabla \cdot (- D_i \nabla c_i + c_i U) = S_i \n\]

- **Source Terms for Gas Phase**
 \[S_i = - K_{ov} a_{eff} \left[\frac{C_{Gi}}{H_i} - C_{Li} \right] \]

- **Source Terms for Liquid Phase**
 \[S_i = K_{ov} a_{eff} \left[\frac{C_{Gi}}{H_i} - C_{Li} \right] - R_{ij} \]
 \[S_j = - 2 R_{ij} \]

Main Kinetic Reactions
- \(\text{CO}_2 + \text{OH}^- \rightarrow \text{HCO}_3^- \)
- \(\text{HCO}_3^- \rightarrow \text{CO}_2 + \text{OH}^- \)
- \(\text{DGA}^- + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{DGACOO}^- + \text{H}_3\text{O}^+ \)
- \(\text{DGACOO}^- + \text{H}_3\text{O}^+ \rightarrow \text{DGA}^- + \text{H}_2\text{O} + \text{CO}_2 \)

Main Equilibrium Reactions
- \(\text{DGAH}^- + \text{H}_2\text{O} \leftrightarrow \text{DGA}^- + \text{H}_3\text{O}^+ \)
- \(\text{HCO}_3^- + \text{H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^- + \text{CO}_3^{2-} \)
CO$_2$ Concentration Profile along Column under Different Liquid Velocities

Liquid flow rate: 30 mL/min
Gas flow rate: 0.15 SLPM

Liquid flow rate: 3 mL/min
Gas flow rate: 0.15 SLPM

Liquid flow rate: 0.3 mL/min
Gas flow rate: 0.15 SLPM

Packing length: 20.4 cm
Diameter: 2.54 cm
Liquid: 30 wt% DGA, 25C
Gas: 13% CO$_2$/87% N$_2$

Unit: %
Temperature Profiles with Changing Liquid Velocities

Liquid flow rate: 0.076 mL/min Liquid flow rate : 0.76 mL/min Liquid flow rate : 7.6 mL/min

(constant gas flow rate 0.6 SLPM)
Experimental and Simulated CO$_2$ Removal Ratio
(ceramic foam column= 20.4 cm)

Liquid phase: 30% DGA, Gas phase: 13% CO$_2$/87% N$_2$; Temperature: 25 °C
Experimental and Simulated CO₂ Removal Ratio
(ceramic foam column= 10.2 cm)

Liquid phase: 30% DGA, Gas phase: 13% CO₂/87% N₂; Temperature: 25 °C
Prototype of Integrated CO₂ Absorber and Desorber Unit

- Fiber Glass Wool Blanket: 19cmx0.5cmx10cm
- Alumina Foam: 20cmx2.35cmx10cm
- Porous Alumina Membrane: 19cmx2.5cmx10cm
- PES Membrane: 19cmx0.14umx10cm

Photograph of the experimental setup developed for the proof-of-concept demonstration.
Representative of Liquid Phase Velocity and Temperature Profiles

- Liquid: 30 wt% DGA
- Gas: 13% CO₂/87% N₂
- Liquid flow rate: 50 mL/min
- Gas flow rate: 4 SLPM

Liquid phase velocity field

Temperature ranges:
- Steam outlet: 120°C
- Gas outlet: 25°C
Our Approach:
Using Metal Oxides during Desorption

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-Enhanced Separation of CO₂

- Metal Oxides
- Waste Heat
- Amine Absorption for Carbon Capture
- Integrated Absorber-Stripper
- Vacuum Stripping
Experimental Setup

- 15 mL of an amine solution pre-loaded with 0.3 mol CO₂
- To each solution, 1.5 g of MOₓ powder added, 15 min equilibration
- N₂ bubbling through solution at 800 mL min⁻¹, temperature from 25 °C to 86 °C at 10 °C min⁻¹
• WO$_3$, V$_2$O$_5$, and MoO$_2$ increased the release of CO$_2$ from MEA
• V$_2$O$_5$ and MoO$_2$ started desorbing CO$_2$ at 40 °C during the initial 15-minute equilibrium step
• WO$_3$ caused more CO$_2$ release than MEA only after 76 °C
Screening of Metal Oxides for CO₂ Desorption

<table>
<thead>
<tr>
<th>MOₓ (1.5 g)</th>
<th>Cumulative %CO₂ released by 30 min at 86 °C</th>
<th>Cumulative %CO₂ released by 60 min at 86 °C</th>
<th>Time (min), temperature °C of max CO₂ release peak</th>
<th>IEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA only</td>
<td>31.6</td>
<td>49.2</td>
<td>14, 84</td>
<td>N/A</td>
</tr>
<tr>
<td>WO₃</td>
<td>34.7</td>
<td>60.0</td>
<td>13, 73</td>
<td>0.2 – 0.5</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>45.8</td>
<td>69.0</td>
<td>10.5, 76</td>
<td>1 – 2</td>
</tr>
<tr>
<td>MoO₂</td>
<td>65.8</td>
<td>76.2</td>
<td>10, 82</td>
<td>2.5</td>
</tr>
<tr>
<td>MnO₂</td>
<td>29.8</td>
<td>46.8</td>
<td>15, 84</td>
<td>4 – 5</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>29.7</td>
<td>46.8</td>
<td>15, 84</td>
<td>7</td>
</tr>
<tr>
<td>α-Al₂O₃</td>
<td>29.4</td>
<td>47.0</td>
<td>14, 84</td>
<td>8 – 9</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>29.3</td>
<td>46.5</td>
<td>15, 84</td>
<td>9</td>
</tr>
<tr>
<td>MgO</td>
<td>13.7</td>
<td>22.3</td>
<td>13, 80</td>
<td>12 – 13</td>
</tr>
</tbody>
</table>

- No correlation between IEP and CO₂ desorption
- WO₃, V₂O₅, and MoO₂ caused CO₂ to desorb at lower temperatures than CO₂-loaded MEA solution
- WO₃ did not dissolve, which implies that ceramic foams made using WO₃ may be suitable in a stripper unit
Screening of Metal Oxides for CO$_2$ Desorption (Piperazine)

No correlation between IEP and CO$_2$ desorption
- WO$_3$, V$_2$O$_5$, and MoO$_2$ caused more CO$_2$ release than piperazine (PZ) only solution
- Similar to MEA, WO$_3$ did not dissolve in PZ.
Developed a process model to simulate gas/liquid flow and reaction in integrated CO₂ absorber/desorber unit

- Complete development of a 1D process model.
- Successful to predict pressure drop, flooding and CO₂ absorption in 1D ceramic foam column.
- Predicted fluid flow and temperature profiles of integrated absorber/desorber unit in 2D model

Screened various metal oxides for CO₂ desorption

- Metal oxides represent a new approach to reduce the desorption temperature
- Our process can potentially reduce the cost of existing amine-based CO₂ capture technology by addressing the major challenges due to high desorption temperatures. These challenges are- high energy requirement, degradation and evaporation of amine solutions
Research Tasks for 2014-15

- Model combined absorber/desorber CO₂ separation process
 - Continue the development of a 2-D model to simulate gas and liquid flow in the capture process and compare simulation results with experimental measurements
 - Perform a sensitivity analysis and process optimization

- Develop low temperature desorption zone
 - Develop highly active and stable catalysts that can further lower the desorption temperature.
 - Perform appropriate tests to examine the amine solutions after experiments to check for any degradation products.
 - Design foams containing metal oxides
 - Reduce the cost of existing amine-based CO₂ capture technology by addressing major challenges due to high desorption temperatures.

- Complete an exergy (available energy) and techno-economic analysis and perform an EH&S assessment of the process
Acknowledgements

Personnel
• Dr. Joe Powell, Chief Scientist at Shell Oil Company
• Dr. TS Ramakrishnan, Scientific Advisor at Schlumberger-Doll Research Center
• Hirasaki Group & Wong Group members at Rice University

Additional Funding Support
• Energy and Environmental Systems Institute (EESI) at Rice University
• Rice Consortium on Processes in Porous Media
• Schlumberger
Material Properties of alumina membrane and polymer (PES) membrane

<table>
<thead>
<tr>
<th>Porous Alumina Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Supplier</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Mean pore-size</td>
</tr>
<tr>
<td>Permeability & Gas Entry Pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas-Liquid Separator Polymer Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Supplier</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Mean pore-size</td>
</tr>
<tr>
<td>Permeability & Gas Entry Pressure</td>
</tr>
</tbody>
</table>