Techno-economic Evaluation of State-of-the-Art and Advanced Post-Combustion Capture Plants

Kristin Gerdes
Office of Program Performance and Benefits
July 29, 2014
• **Outline**
 – Bituminous Baseline Study Revision 3
 – Clean Coal Research Program Goal Review
 – NETL Advanced Capture Technology Assessments

• **Acknowledgements**
 – DOE:
 • Tim Fout
 • Bob Stevens
 • Mike Matuszewski
 • John Wimer
 • Jim Black
 – ESPA:
 • Mark Woods, Booz Allen
 • Marc Turner, Booz Allen
 • Dale Keairns, Booz Allen
 • Dick Newby, Booz Allen
 • Vasant Shah, Booz Allen
 • Worley Parsons
Office of Program Performance and Benefits

BITUMINOUS BASELINE STUDY

REVISION 3
Update to the Bituminous Baseline Study

Overview

Full Title: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 3, Fall/Winter 2014

Purpose: to provide a basis for evaluation of advanced technologies on a consistent set of technical and economic assumptions

• Major change summary
 • Updated basis for performance and cost for CO₂ capture system, CO₂ compression, steam turbines, natural gas turbines
 • Update of all cases to 2011$
 • Updated environmental control train to address EPA regulations
 • Updated tables to include additional data
 • New case numbering system (conforms with Low Rank study)
 • Minimal changes to IGCC cases (further updates coming soon!!)
Flowsheet Changes

B11A and B12A – No CO₂ Capture

Note: Block Flow Diagram is not intended to represent a complete material balance. Only major process streams and equipment are shown.
Flowsheet Changes

B11B and B12B – with CO₂ Capture

New

Updated

Note: Block Flow Diagram is not intended to represent a complete material balance. Only major process streams and equipment are shown.
Amine-based capture system

Features:
Absorber – acid brick lined concrete structure
90% CO₂ Capture
Pre-scrubber used in coal cases only
Baseline Greenfield Capture and Compression Technology Update

PC Plants Quote Vintage

<table>
<thead>
<tr>
<th>Metric</th>
<th>2005</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Energy Penalty [kWhnet/lb CO₂ Captured]</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>Reference Capital Cost [$2011/tpd CO₂ Capt. @ full load]</td>
<td>$45,000</td>
<td>$47,900</td>
</tr>
<tr>
<td>CO₂ Capture Basis [tpd]</td>
<td>11,210</td>
<td>11,210</td>
</tr>
</tbody>
</table>

PC: ~25% reduction in regeneration energy penalty

NGCC: ~20% reduction in regeneration energy penalty

2012 Update

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Electrical Derate</th>
<th>Steam Turbine Derate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-F</td>
<td>69%</td>
<td>69%</td>
</tr>
<tr>
<td>NGCC-F</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>PC-CS</td>
<td>63%</td>
<td>63%</td>
</tr>
<tr>
<td>NGCC-CS</td>
<td>61%</td>
<td>61%</td>
</tr>
</tbody>
</table>
Bituminous Baseline Revision Comparisons

Net Plant Efficiency (% HHV)

- **Rev 2**
 - B11A, Sub PC: 37
 - B11B, Sub PC w/ Cap: 31
 - B12A, Super PC: 33
 - B12B, Super PC w/ Cap: 28
 - B31A, NGCC: 50
 - B31B, NGCC w/ Cap: 46

- **Rev 3**
 - B11A, Sub PC: 39
 - B11B, Sub PC w/ Cap: 41
 - B12A, Super PC: 39
 - B12B, Super PC w/ Cap: 41
 - B31A, NGCC: 52
 - B31B, NGCC w/ Cap: 43

Total Plant Cost (2011$/kW)

- **Rev 2**
 - B11A, Sub PC: $3,000
 - B11B, Sub PC w/ Cap: $3,500
 - B12A, Super PC: $2,500
 - B12B, Super PC w/ Cap: $3,000
 - N31A, NGCC: $1,500
 - N31B, NGCC w/ Cap: $1,000

- **Rev 3**
 - B11A, Sub PC: $3,500
 - B11B, Sub PC w/ Cap: $4,000
 - B12A, Super PC: $4,000
 - B12B, Super PC w/ Cap: $4,500
 - N31A, NGCC: $500
 - N31B, NGCC w/ Cap: $0
Bituminous Baseline Revision Comparisons (con’t)

Total COE w/o T&S (2011$/MWh)

<table>
<thead>
<tr>
<th>Plan</th>
<th>Rev 2</th>
<th>Rev 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11A, Sub PC</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>B11B, Sub PC w/ Cap</td>
<td>142</td>
<td>135</td>
</tr>
<tr>
<td>B12A, Super PC</td>
<td>81</td>
<td>83</td>
</tr>
<tr>
<td>B12B, Super PC w/ Cap</td>
<td>137</td>
<td>135</td>
</tr>
<tr>
<td>B31A, NGCC</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>B31B, NGCC w/ Cap</td>
<td>87</td>
<td>83</td>
</tr>
</tbody>
</table>

CO₂ Capture Cost w/o T&S (2011$/tonne)

<table>
<thead>
<tr>
<th>Plan</th>
<th>Rev 2</th>
<th>Rev 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11B, Sub w/ Cap</td>
<td>55</td>
<td>58</td>
</tr>
<tr>
<td>B12B, Super w/ Cap</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>B31B, NGCC w/ Cap</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Capture cost calculated with SC baseline for Coal and NGCC for NG.
Office of Program Performance and Benefits

CLEAN COAL RESEARCH PROGRAM (CCRP) GOAL REVIEW
Clean Coal Research Program Goals
Driving Down the COE and Cost of CO₂ Capture of Coal Power with CCS

Cost of Electricity Reduction Targets

<table>
<thead>
<tr>
<th>COE Relative to Today's Coal with Capture, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- IGCC or Supercritical PC
- 2nd-Generation Technology
- Transformational Technology

Cost ofCapture, 2011$/tonne CO₂

<table>
<thead>
<tr>
<th>Cost of Capture, 2011$/tonne CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

SOA

2025

2035

Goals shown are for greenfield plants. Costs are nth-of-a-kind, are for the first year of plant operation, and include compression to 2215 psia but exclude CO₂ transport and storage costs. Today's capture costs are relative to Today's SCPC without CO₂ capture. 2025 and 2035 capture costs are relative to an A-USC PC without CO₂ capture.
R&D Driving Down the Cost of CO₂ Capture

Greenfield Post-Combustion Capture Plants

Today's Supercritical PC with Capture ~$60/tonne

Crosscutting Research

2nd-Generation Post-Combustion Capture (Solvents, Sorbents or Membranes) and Adv. Compression

A-USC Steam Cycle

Large-Scale Testing

2nd-Generation Target $40/tonne

Transformational R&D:
- Transformational Post-Combustion Capture (Solvents, Sorbents, Membranes, or Thermal Separation and Multi-contaminant Removal)
- Advanced Power Cycles (i.e. Supercritical CO₂ Cycles)
- Advanced Concepts and Materials

Transformational R&D to Target Cost of Capture <<$40/tonne

Beyond 2025 - Transformational
R&D Driving Down the Cost of CO₂ Capture

IGCC with Pre-Combustion Capture

- **Advanced Sorbent, Solvent, Membrane**
- **WGCU, ITM, Dry, High Pressure Feed**
- **Advanced Hydrogen Turbine (2650°F)**

Today's IGCC with Capture ~$60/tonne

2nd-Generation Target $40/tonne

Transformational R&D:
- Transformational Hydrogen Turbine (3100°F, Pressure Gain Combustion)
- ITM/Turbine Integration
- Transformational Hydrogen Production
- Transformational Pre-Combustion Capture

Beyond 2025 - Transformational R&D to Target Cost of Capture <<$40/tonne
Office of Program Performance and Benefits

ADVANCED CAPTURE TECHNOLOGY ASSESSMENTS
NETL/OPPB Advanced Capture Ongoing Analyses

• “Current and Future Technologies for Post-Combustion Capture” i.e. PCC Pathway Study
 – Coal – Update to 2011 dollars; preliminary consideration of CO₂ purification
 – NGCC – In progress

• Screening studies (pre- and post-combustion capture)
 – Solvents
 – Sorbents
 – Membranes
 – Internal and external

• R&D Guidance for Post-Combustion Capture Techno-Economic Evaluations
PCC Pathway Study

Objectives & Scope

• Objectives:
 – Develop technology pathways that feature post-combustion CCS-enabled PC plants that achieve DOE goals
 – Utilize the pathway studies to inform technology development through identification of performance and cost targets

• Technologies included:
 – 2nd-generation post-combustion CO₂ capture
 – Adv. Ultrasupercritical (A-USC steam) conditions (5000psig/1350F/1400F)
 – Advanced CO₂ compression

• Scope:
 – Pathway begins with 1st generation supercritical PC plant with today’s post-combustion capture technology
 – Emerging technologies added based on mature stage of development, thus simulating “n-th-of-a-kind” plant performance and cost
 – 2nd-generation post-combustion CO₂ capture and compression cost and performance adjusted to meet program goals
PC with Adv. Membrane – Example to Meet Goals

Key Membrane Parameter Assumptions

- CO₂ and SO₂ Permeance: 3,500 gpu
- N₂, O₂, Ar Permeance: 100 gpu
- H₂O Permeance: 5,000 gpu
- Pressure drop: 1.0 psi (flue gas and sweep sides)
- Vacuum pump achieves 0.2 bar pressure
- Membrane replacement time 5 years
- Membrane surface area: 1,500,000 m²
- Membrane installed cost $127/m²
- Membrane replacement cost $17/m²

<table>
<thead>
<tr>
<th>Capture/Compression Impact</th>
<th>Amine Quote Vintage</th>
<th>Adv. Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>2005</td>
<td>2012</td>
</tr>
<tr>
<td>Net Energy Penalty</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>[kWhnet/lb CO₂ Captured]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Capital Cost</td>
<td>$45,000</td>
<td>$47,900</td>
</tr>
<tr>
<td>[$2011/tpd CO₂ Capt. @ full load]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Capture Basis [tpd]</td>
<td>11,210</td>
<td>11,210</td>
</tr>
</tbody>
</table>
The adv. sorbent process requires considerable extraction steam consumption for flue gas heating and for adsorbent regeneration (> 1x10^6 lb/hr) and large BFW makeup treatment system.

The reaction vessels are very large and mechanical adsorbent circulation is used for the large adsorbent circulation rate required (> 31 x 10^6 lb/hr).

Key Adsorbent Parameter Assumptions
- Adsorbent: alkalized alumina; 3/8 inch diameter spheres
- Adsorbent cost: $5/lb
- Sorbent CO₂ loading: 3.0%
- Adsorber and regenerator temperature: 140°C
- Adsorber and regenerator pressure drop: 0.4 psi
- Adsorbent entrains 1.0 wt% of inlet N₂, O₂ and water vapor to the regenerator
- Regenerator off-gas: 50 mole % CO₂
- Adsorber-regenerator type: Moving bed
- Adsorbent transport: Bucket conveyor-elevators

Capture/Compression Impact

<table>
<thead>
<tr>
<th>Metric</th>
<th>Amine Quote Vintage</th>
<th>Adv. Sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Energy Penalty</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>kWhnet/lb CO₂ Captured</td>
<td>2005</td>
<td>2012</td>
</tr>
<tr>
<td>Reference Capital Cost</td>
<td>$45,000</td>
<td>$47,900</td>
</tr>
<tr>
<td>[$2011/tpd CO₂ Capt. @ full load]</td>
<td>11,210</td>
<td>11,210</td>
</tr>
<tr>
<td>CO₂ Capture Basis [tpd]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PCC Pathway Efficiency and Cost of Capture

NOTES:
• Amine-based cases are consistent with NETL Bituminous Baseline Rev. 2 Report
• All membrane and sorbent-based cases utilize enhanced performance and cost parameters
CO₂ Purification

- Purification of the CO₂ product stream will likely be necessary for most end-uses
- Preliminary evaluation of refining CO₂ purification to PCC Pathway cases
 - CO₂ purity prior to purification: 92-97%
 - Impact using external refrigeration cycles
 - Efficiency reduction ~2% points
 - COE increase 8-10%
- Other potential purification options:
 - Auto-refrigeration cycles
 - Membranes
 - Other capture process optimizations

<table>
<thead>
<tr>
<th>Purity Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>O₂</td>
</tr>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>N₂, Ar, CH₄, H₂</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>H₂S</td>
</tr>
<tr>
<td>SO₂</td>
</tr>
<tr>
<td>...etc.</td>
</tr>
</tbody>
</table>
Current and Future Technologies for Post-Combustion Capture: NGCC

- **Objective:** Evaluate impact of advanced CO$_2$ capture technologies in an NGCC plant
- **Preliminary conclusions:**
 - Sorbents and membranes more sensitive to lower CO$_2$ concentration of NGCC flue gas (~4% vs. ~14% for PC) than solvents
 - Exhaust gas recirculation (EGR) key to increase CO$_2$ concentration in flue gas for sorbents and membranes
Advanced Capture Technology Screening Studies

- **Post-combustion capture solvents:**
 - Model/predict process improvements that are applicable to many capture technologies:
 - L/R exchanger temperature approach
 - CO₂ Stripper regen pressure
 - Advanced heat integration schemes
 - Forecast potential of combining advanced capture technologies with advanced processes

- **Pairing of post-combustion capture technologies**
 - e.g. solvents and membranes

- **Pre-combustion capture sorbents/membranes:**
 - Pairing with advanced gas cleanup systems and CO₂ purification systems

- **NETL may contact you with requests for details about your project (i.e., design and/or performance aspects)**
QUESTIONS?