Post-Combustion Testing

2104 NETL CO₂ Capture Technology Meeting
July 29 to August 1
Performance Period for DE-FE0022596: 5/01/2014 to 04/30/2019
DOE funding $150M with $38M industrial cost share
DOE Project Manager Mike Mosser
Role of NCCC in CO$_2$ Capture Technology Development

First-class facilities to test developer’s technologies for extended periods under commercially representative conditions with coal-derived flue gas and syngas. Simultaneous testing at a range of sizes to accelerate development of cost-effective technologies.

- Supports transition from lab to commercial environment.
- Full support for testing of developer’s technology.
- Experienced operators and maintenance staff.
- Comprehensive data collection and analysis capability.
- Local access to advanced analytical techniques.
- Flexible facilities for scale-up from bench- to pilot-scale.

Testing support to advance developer’s technologies is top priority.
Located in Wilsonville AL, 30 miles S-E of Birmingham.

- Gasification and pre-combustion CO₂ capture testing carried out at Power Systems Development Facility: in service since 1996.
- Post-combustion CO₂ capture testing carried out at Post-Combustion Carbon Capture Center (PC4) located at Alabama Power’s Plant Gaston: in service since 2011.
- Base-loaded, 900-MW supercritical unit with SCR and wet FGD firing medium-sulfur bituminous coal providing a commercially representative flue gas slipstream to PC4.
Infrastructure recently expanded to meet demand for testing
Pilot-Scale Test Bays at PC4

Current Occupants
1. 0.5-MW PSTU (solvent)
2. 1.0-MW Linde (solvent)
3. 1.0-MW MTR (membrane)

Once testing complete, other developers accommodated

Each Bay complete with foundations, services, and gas connections to accept future technologies with limited modification.
Bench-Scale Test Bays at PC4

Current occupants
1. Akermin (solvent); to be modified for testing first half 2015 with new solvent.
2. MTR (membrane). Near end of program; provided valuable data to support design of 1-MW unit.
3. SRI International (sorbent): in progress
4. DOE (sorbent): in progress
5. Slipstream Test Unit (SSTU) (solvent): being completed ready for testing first half 2015.

Once testing complete, other developers accommodated

For PC4 test bays, in typical three-month period flue gas available for 1750 hours, allowing a lot of data to be collected in short period of time.
Progression Along Technology Time Line

Lab Scale	Component Validation	Process Development Unit	Large Pilot	Demonstration	Commercial

Enzymes
Membranes
Sorbents
Solvents
Solvent & membrane

PSTU
Example of Scale-Up Support Provided by NCCC

Data collected and lessons learned on MTR’s 500 lb/hr flue gas bench-scale membrane used to support design and equipment selections of 10,000 lb/hr pilot-scale membrane.
Solvents from six developers, plus MEA, tested some with diluted coal-derived flue gas to mimic NGCC flue gas
- High quality data collected with mass balance closures better than ±3 percent
- Monoethanolamine (MEA) heat of regeneration with 7°F approach temperature ~1550 Btu/lb
- Solvent tested with heat of regeneration as low as ~900 Btu/lb, 40 percent lower.
- Lower values possible with improved heat integration (CCSI modeling)
- Close to achieving Clean Coal Research Program 2020-2025 objective of lowering cost of CO₂ capture to $40/tonne.

MEA data supporting DOE’s CO₂ Capture Simulation Initiative (CCSI) modeling activity
- Investigation of performance aspects of value to end users: solvent emissions, ash accumulation, instrumentation testing.
Wide Range of Data Collected

- PSTU can gather solvent density, viscosity, and specific heat data for a range of CO$_2$ loadings to validate and/or expand physical property database.

- Coupons installed throughout the PSTU to assess how corrosion rates of different materials vary with location.

Operation with intercoolers raised capture efficiency 6 percentage points (90 to 96%)
Issues Revealed by PC4 Testing

- MEA emissions from the PSTU as high as 500 ppmv (5.7 lb/hr)
 - Emissions predicted to be less than 3 ppmv
 - SO$_3$ aerosol present in flue gas leaving Gaston FGD responsible
 - All amine solvents had similar experience but not potassium carbonate
 - Increases solvent make up rate, may infringe emission limits
 - Cost effective approaches to reduce amine emissions from absorber required.

- Although flue gas low in metals content, they accumulate in solvent
 - Selenium exceeds RCRA limit: rate of accumulation will be reduced for plants meeting new Mercury and Air Toxics Standards
 - Anions (sulfate, nitrate, and chloride) also present in addition to solvent degradation products (e.g. aldehydes and ammonia)
 - Economic cleanup for optimal solvent and plant performance required.

- SO$_3$ (present as ammonium sulfate/bisulfite) resulted in deposits forming in outlet of 0.05-MW MTR flue gas compressor.
 - Resulted in changes to 1-MW membrane design

Results emphasize benefits of testing with commercially representative flue gases
Tests Completed or Planned at PC4 Pilot Bays

<table>
<thead>
<tr>
<th>PSTU</th>
<th>Pilot Bays 2 & 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed or in progress</td>
<td></td>
</tr>
<tr>
<td>MEA Baseline</td>
<td>Aker Clean Carbon</td>
</tr>
<tr>
<td>Babcock & Wilcox Opticap</td>
<td>Linde solvent (*)</td>
</tr>
<tr>
<td>MEA solvent carry over</td>
<td>MTR membrane (*)</td>
</tr>
<tr>
<td>Hitachi H3-1</td>
<td></td>
</tr>
<tr>
<td>Cansolv 201 (12% CO₂)</td>
<td></td>
</tr>
<tr>
<td>Chiyoda T-3</td>
<td></td>
</tr>
<tr>
<td>Cansolv 201 (4% CO₂)</td>
<td></td>
</tr>
<tr>
<td>Clean Carbon Solutions</td>
<td></td>
</tr>
<tr>
<td>Cansolv 103</td>
<td></td>
</tr>
<tr>
<td>Planned (not necessarily confirmed)</td>
<td></td>
</tr>
<tr>
<td>Univ. Texas Austin (*)</td>
<td>Air Liquide membrane (*)</td>
</tr>
<tr>
<td>MEA Sampling Techniques</td>
<td>SRI sorbent (*)</td>
</tr>
<tr>
<td>GE Global Research (*)</td>
<td></td>
</tr>
</tbody>
</table>

(*) presenting at this meeting
Tests Completed or Planned at PC4 Bench-Scale Bays

<table>
<thead>
<tr>
<th>Completed or in progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codexis enzyme</td>
</tr>
<tr>
<td>MTR membrane (*)</td>
</tr>
<tr>
<td>Akermin enzyme (*)</td>
</tr>
<tr>
<td>SRI sorbent (*)</td>
</tr>
<tr>
<td>NETL sorbent (*)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planned (not necessarily confirmed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Capture Scientific (*)</td>
</tr>
<tr>
<td>Sustainable Energy Solutions</td>
</tr>
<tr>
<td>Akermin Advanced Process (*)</td>
</tr>
<tr>
<td>TDA Research sorbent (*)</td>
</tr>
<tr>
<td>SSTU for novel solvents</td>
</tr>
</tbody>
</table>

(*) presenting at this meeting
Closing Comments

• 17 test campaigns completed or in progress at PC4 with over 24,000 data collection hours using 50 to 10,000 lb/hr of flue gas
 – In service just over three years: cost-effective testing and data collection
 – Supporting scale up from bench- to pilot-scale, advancing technologies along the developmental time line
 – Several other developers are scheduled to test their technologies.

• An advanced solvent has been tested on the PSTU with a regeneration energy 40% lower than that of 30-wt% MEA
 – Close to achieving Clean Coal Research Program 2020-2025 objective of lowering cost of CO₂ capture to $40/tonne.

• Need to continue identifying improved technologies that lower the cost of CO₂ capture and satisfy Clean Coal Research Program 2030-2035 objectives
 – NCCC will continue to support developers in advancing commercialization of their technologies in pursuit of this goal.